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Preface 

Specificities of Modern Manufacturing 

Nowadays, rapid and fundamental changes take place in government, business, 
technology and society. More than ever before, manufacturing is confronted with 
environment-related requirements. Globalization and eCommerce have led to the 
establishment of a demanding consumer market, where at least four general 
requirements for any single product concern manufacturers more than ever. These 
are high quality, low price, quick delivery, and last but not least – high 
customization, leading to an explosively increasing number of variants to be 
produced and to complexity of the products and their production. In these 
conditions of increasing competition, the trends to specialization and consolidation 
of small and medium-sized enterprises are a legitimate consequence. 

One of the most challenging tasks related to the product and process modelling 
(as in many other areas) is the management of expert knowledge. This means that 
modelling is used in order to accelerate knowledge acquisition, to formalize 
knowledge representation and to enable knowledge transfer and reuse. 
A key to achieving these goals is the proper application of modelling. 

About the Book 

History 

Although I obtained a degree in mechanical engineering, my passion was actually 
automation and especially the use of computers for supporting it. The success of 
my first IT-project – my diploma work – was probably the cause for a shift in my 
professional career towards the interdisciplinary and new at that time field of 
application of computers for industrial automation. I have worked on many topics 
from very different areas – some of the more important are data exchange and 
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conversion, integration of different applications or subsystems, virtual and mixed 
reality applications, architecture of software systems, 3D-visualization and 
simulation and even simulation and visualization for medical purposes. At some 
point in time, I noticed that all these topics have got much more in common than 
one usually supposes. In short, I have noticed that the efficiency of any solution in 
any particular field depends primarily on the quality of the models used at the 
beginning of each process chain. On the other hand, I have also noticed that some 
problem solving methodologies and tools specific to the separate topics influence 
the modelling too much. So much so that in extreme cases the experts begin to 
think in tool-related concepts or notions, and sometimes even forget that they are 
using models – with all the related consequences. Actually, something similar has 
happened to me. During the preparation of my PhD thesis about the exchange of 
product model data among a large number of CAx-systems I was really 
concentrated on these systems, on the respective standards for exchange and as it 
seemed to me – on the problems of exchange. It was not until I finished the thesis 
that I realized: the data exchange – even if it was perfect – is not what is needed! It 
just helps us to compensate the imperfectness of the CAx-systems and the 
workflow of product models. It took some time before I realized that what was 
really needed was integration, not data exchange. Starting an investigation of 
integration and its problems took a long time, and has involved a lot of modelling 
to overcome the complexity of the matter and to enable the search for a really 
generic solution. 

Ever since I realized the importance of modelling I have tried to learn more 
about it to obtain more benefits from any area where it has to be applied. As it 
turned out that modelling itself is not extremely well studied, I decided to 
investigate it myself. This book is an attempt to systematize and make public all 
knowledge about modelling and its application in the field of engineering that I 
have acquired, together with my vision and as many ideas and small discoveries in 
the area as possible. I believe that once described, each good idea will sooner or 
later be understood, no matter how bad its description is. And if the idea finds the 
right public, it starts rolling and growing like a snowball down the hill. 

Since I am neither mellifluous (most engineers are not), nor an English native 
speaker, it was clear to me from the beginning that this book cannot be – at least 
from a literary point of view – a masterpiece. But even knowing this, I thought that 
“seeding” ideas is much more important than achieving a high literary quality. I 
hope that many readers will not only understand and use the presented material, but 
will be able to explain, respectively describe it much better than me. Perhaps You 
will be one of those readers? Finally, as Francis Darwin supposedly said, “in 
science the credit goes to the man who convinces the world, not to the man to 
whom the idea first occurs”. 

In short, I hope that some of the ideas described in this book will either be 
useful to other people or lead to the birth of other novel ideas and thus contribute to 
the domain knowledge. 

Topics/Keywords 

Modelling, simulation, integration, reuse, lifespan, lifecycle, autonomy, 
intelligence, learning, complexity, efficiency can be mentioned as just a few of the 
more important topics. 
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Approach 

I believe that the terms are tightly connected to the problems and their solutions 
(cf. Figure 0.1). In particular, the use of proper terms is very important not only to 
achieve the right understanding of the material, but also to avoid the emergence of 
pseudo-problems, misleading causes and side effects or improper solutions. 
Therefore, a great effort has been invested to define all terms used and to make the 
definitions as clear, precise and non-contradictory as possible. As such a goal is 
very difficult to achieve, some definitions can be unexpected or at least specific to 
this study.  

State
(of the art)

Solutions

Problems

Secondary
problemssolve

influence

leads to

needs

Cause(s)

induceoriginate

produce

influence

produce

influence

influenceremove
or change

influence

Analysis

Terms,
catchphrases

 
Figure 0.1. Interrelations between terminology and problem solving 

A large number of earlier publications by the author are re-thought, improved 
and integrated in this text. 

Ideas or concepts are sometimes presented on the principle of a “nasty 
commercial” – for some reason, unpleasant or annoying presentations can be 
memorized better and even against our will. 

Some concepts, principles and approaches are used again and again in the 
reasoning, even when not apparent. This repetitive use happens not because of 
some particular preferences of the author (although preferences have definitely 
played a role), but due to their particular suitability for the task at hand. Two of 
them are the set theory and the Pareto's principle1 (also known as the 80:20 rule), 
although their use cannot always be recognized at first glance. 
                                                 
1 cf., e.g., Brockhaus, F. A. (Ed.) (1989) Brockhaus Lexikon, Mannheim, Deutscher 

Taschen Verlag 
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Audience 

The issues discussed in this monograph are of interest to lecturers, researchers and 
students in the field of mechanical engineering, mechatronics or computer science, 
but the material could also be useful for programmers and other people interested 
in or practicing modelling of products or processes. I hope that the book can be of 
use also for people, involved in creating CAx-systems or dealing with them in any 
way – system architects, analysts, decision makers, etc. Finally, scientists dealing 
with either models or modelling in other scientific areas could find (parts of) the 
material useful. 

Text Organization 

The main text is organized in five chapters.  
Chapter “Introduction” starts with the motivation for the writing of this 

monograph, discussed on the background of the actual problem area. 
Chapter “Modelling Basics” defines basic terms in modelling, presents its 

objectives, and gives some possible modelling classifications based on different 
criteria. 

Chapter “Conventional Product and Process Modelling” discusses in detail the 
problems of conventional product and process modelling, as well as some general 
problems related to the use of computer aided systems in different areas of 
mechanical engineering. Complexity, its consequences and the ways to master it, 
as well as the integration-related issues are just few of the viewed important topics. 

Chapter “Towards Better Product and Process Modelling” starts with a preview 
of some of the known recent approaches in this area, which are trying to avoid the 
problems of the conventional approach. From the analysis of these approaches and 
from the modelling issues, reviewed in the previous chapter, is derived a set of 
requirements for an idealized “perfect” modelling approach. Later on, a novel 
approach to product and process modelling is presented, which exhibits potential 
for achieving better results with regard to reusability, integrability of 
heterogeneous models, flexibility, maintainability, etc. 

The “Conclusion” and “Perspectives” present a final discussion, a general 
overview of future prospects as well as some plans for future work. 

An index and a list of the used in the text abbreviations are included at the end 
of the monograph. 

Disclaimer 

As almost every other technical book, this one also does not contain only new 
material – in many places other people's views or opinions are presented, discussed 
or extended. The author did his best with referencing and giving credit always 
when possible. Should there be any occasion where this is not the case, it is not 
intentional. All trademarks and registered trademarks, mentioned in the text, 
belong to their respective owners. 

 
 
Saarbrücken, March 2007  Nikolay Avgoustinov 
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1 Introduction 

Introduction 

1.1 Motivation 

1.1.1 Challenges in Manufacturing, Products and Service Engineering 

According to a document published by the Intelligent Manufacturing Systems 
Secretariat of the European Community, the following topics should be the focus 
of Manufacturing, Products and Service Engineering in 2010: 

• Methodologies, tools, work environments for the conceptualisation, design, 
make of products and services/delivery, product support 

• Integration of miniaturized devices and software into intelligent products 
• Value creation processes in manufacturing (knowledge/information flow 

between suppliers and users) novel approaches to customization, logistics, 
maintenance 

• Holistic product design/development and distribution tools and methods 
• Global standardization initiatives: Inter-enterprise business processes 

(planning, scheduling, coordination); assuring process transparency, 
traceability of produced parts, shop floor automation/security 

• “Knowledge communities” in production technologies, advances in virtual 
production, supply chain and lifecycle management, decision-aid systems, 
rapid manufacturing  

Another publication defined a decade ago in Bollinger (1998) the Grand 
Challenges for the Manufacturing in 2020 as follows:  

• Grand Challenge 1: Concurrent Manufacturing 
• Grand Challenge 2: Integration of Human and Technical Resources 
• Grand Challenge 3: Conversion of Information to Knowledge 
• Grand Challenge 4: Environmental Compatibility 
• Grand Challenge 5: Reconfigurable Enterprises 
• Grand Challenge 6: Innovative Processes 
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Contemplating what is already achieved and what could be achieved in the near 
future, we have come to a vision that shapes the spirit of the present study. 

1.1.2 A Vision: Manufacturing in the Twenty-xth Century 

Having a vision is not an end in itself. To have a vision means to analyse the past 
and the present and try to extrapolate development in the future in order to foresee 
it. The further away in the future one would like to (fore)see, the more of the past 
would have to be analysed and the higher the probability that the foresight will 
deviate from the reality when the considered time comes. Only those who (try to) 
foresee the future can anticipate the events – good or bad – and forestall the 
competition in dominating the market. To get the right vision is not easy, but even 
a bad vision is better than no vision at all. So let us try to recall the past of 
mechanical engineering, to review its present, to project ourselves into the twenty-
xth century of the millennium and have a look around. According to experience and 
imagination, each of us will be able to imagine a very different situation. For 
instance, at some point in the future the following could have happened: 

I1. Material processing has become infinitely easy, cheap and fast, which 
makes it affordable for everybody. 

I2. There is rarely a need for pre-fabricated materials, because people have 
mastered material transformation and improvement and can thus use the 
surrounding widespread materials or reuse materials and the energy of 
already unneeded equipment. 

I3. Due to I1 and I2, (conventional) factories are not needed anymore and 
are replaced by ubiquitous or home or in-place manufacturing. 

I4. Due to I1, I2 and I3, warehouses are almost not needed and the use of 
transport is significantly reduced, leading also to cheaper products and 
to reduction of pollution. 

I5. In such a situation, information and knowledge processing becomes the 
most important factor in manufacturing. 

How realistic is such a vision? If it is realistic, when could we (or the future 
generations) expect it? In order to (try to) find answers to these questions, one has 
to consider the known achievements of the science and technology and attempt to 
estimate whether their further development can (at least theoretically) lead to 
similar results. No matter what conclusion is drawn, the reality can be different. 
Nevertheless, if we know what we would like to achieve, it is worth the effort to 
make the first steps towards the accomplishment of our desires as soon as possible, 
as well as to attempt to foresee and plan the remaining steps. 

1.1.3 Preparing (the Technology) for the Twenty-xth Century 

No doubt, the technology of the next centuries will be better than the current 
technology. Nevertheless, despite different theories about giant acceleration (cf. 
http://accelerating.org or http://www.accelerationwatch.com/), technological 
singularity (http://www.singularitywatch.com/) and other predictions we do not 
believe in sudden or very rapid changes in the technology. Even if they happen, 
most of them usually have a limited influence on the technology as a whole and a 
strong impact within some particular field. We firmly believe, though, in the 
gradual but continuous improvement of science and technology altogether. For that 
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reason, it makes sense to mention some of the promising contemporary 
technologies and to contribute to their development. 

1.1.3.1 Thinkable/Conceivable Technologies 

Rapid Prototyping (RP) 
Rapid prototyping encompasses a number of technologies for fast creation of (real 
or physical) products on the basis of their 3D-models. The most popular until now 
RP-technologies have been selective laser sintering (known as SLS), stereo-
lithography, 3D-printing and others. Objects are created as numerous thin layers of 
selectively hardened material having the necessary profile and created over one 
another. 

The most often used materials are either powder-based (ceramic, metal or 
thermoplastics powder) or (photo-)polymer-based. 

Intelligent Materials 
According to Bullinger (2007, p. 36), intelligent (or smart) materials have the 
capability to react to stimuli from the environment or changes there and to adapt 
their functionality respectively. This is either directly possible or achieved through 
combining sensory materials with actuating materials and a control unit. The 
resulting combination is named composite material and has special properties. 

Until now intelligent materials can be classified – according to the main effect 
they use or expose – in at least five groups: 

• with shape memory; 
• with piezoelectric effect; 
• with electrostriction or magnetostriction; 
• using electro-rheology and magneto-rheology; 
• using chromogenic effect. 

Speculating on further development, one could expect materials with 
programmable (or computer-controlled) behaviour (e.g., remote form giving?) in 
the (near) future. 

Better Use of Energy and Resources 
Energy plays key role in industry, society and private life. Its ubiquitous 
availability, safety and price are factors having an enormous influence on its 
usability and on everything depending on energy. There seem to be at least three 
directions at the moment, offering very promising prospects – energy-saving 
technologies, use of regenerative energies (those of the sun, the wind, the water, 
the tides/waves, etc.) and recovery/reuse of energy (e.g., from products to be 
recycled or from garbage). And if their development continues, it would not be 
surprising if in a couple of centuries (or decades?) people are in a position to draw 
all needed energy from the nearby environment. 

Transportation 
Transport is still one of the factors playing a major role in processes such as people 
transportation, delivery of raw material and goods, carriage/conveyance of (partly 
processed) parts during their manufacturing and many others. Despite all 
achievements in the area of transportation it is clear that there are many novelties 
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still to come. And for a great improvement it is not really necessary to have the 
transport technology of the spaceship Voyager – there are many already existing 
technologies that could bring significant improvement in the area even now – like 
the Levitation Railway or pipeline2 transportation. The latter could be used, for 
instance, to easily deliver raw materials in fluid or powder form – e.g., petroleum, 
paraffin, polymers, etc., even to the ubiquitous home (nano) factories of the future. 

Biotechnologies 
Biotechnologies also have good prospects. Especially in combination with other 
sciences they offer attractive possibilities: biomaterials; material bio-
transformations, bio-organization, and in the future possibly even genetically 
programmed material growth (up to programming of the final form!). 

1.1.3.2 Human Resources and Human-related Technologies 
Having good technology alone is not enough: we need experts who know how to 
handle it. In other words, no matter which technologies come to be used in the 
future, it is of strategic importance that their users can really control them. This 
means that, on the one hand, there should be no threats to humans or the 
environment, and on the other hand, the technologies should be used efficiently. A 
key factor for these two prerequisites is the ability to understand the technologies, 
which in turn requires the proper qualification of the immediately involved people. 
Such qualification is achieved by means of training and education, which can be 
enormously improved by use of appropriate models. 

There are a number of novel learning technologies (eLearning, virtual and 
mixed reality, learning by playing, etc.), which have enormous potential. However, 
they can be used only with appropriate models or will bring more benefit when 
based on such models. 

1.2 Immediate Goals and Working Areas 

Assuming that we are motivated to achieve a goal, the next thing to do is to analyse 
the situation and to prepare a plan for the following steps. There is no plan 
proposed here, neither a detailed analysis. We simply try to share some 
observations and ideas for improvements that could contribute to conceiving the 
technology of the future. And the author's view at the time of writing is that our 
current position/advance on the developmental spiral requires first and foremost 
development and elaboration of concepts, methods, and tools for: 

• information and knowledge representation 
• conversion of information into knowledge 
• automated decision making 
• efficient product and process modelling, including reduction of the 

complexity of the modelling and the resulting consequences. 

                                                 
2 Not only for fluids, but also for small containers that can be used to carry objects in them. 
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Eventually, we need highly reusable and easily integrable models. And ideally they 
would be usable for anybody, at anytime and anywhere. 

1.2.1 Information and Knowledge 

Assume for a moment that the information and the knowledge are “made” of data. 
Data is a fascinating “material”, which has one huge advantage – its replication 
and transportation are fast, easy and cheap. Information and knowledge inherit this 
advantage from the data, but they still have to be created, which is not trivial. But 
every technology is based upon knowledge, therefore, to prepare a better 
technology means that society has to extend its knowledge as quickly and 
thoroughly as possible. On the one hand, this means making it generally available, 
efficiently representable, easily reusable and understandable. On the other hand, all 
means supporting the knowledge elicitation, representation, processing, reuse, etc., 
have to come (regularly) within the focus of the development.  
This book is dedicated to modelling, as it is crucial for all aspects discussed above. 

1.2.2 Elaboration of the Curricula of the Future 

It would not be an exaggeration to say that the technology of the future – and 
therewith also the future itself – is forged now in the educational institutions, or 
more precisely – in the minds of the future generations. This means that we are 
responsible for keeping the curricula in these institutions appropriate and up-to-
date, and for its gradual but permanent transformation into the curricula of the 
Twenty-xth century. 
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Modelling Basics 

Science is build up of facts, as a house is build 
up of stones; but an accumulation of facts is no 
more science than a heap of stones is a house. 

Henri Poincaré 
Science and Hypothesis, 1905 

 
Before turning to the problems of modelling in mechatronics, which is our 
immediate domain of interest in this study, we need to set up a descriptive 
foundation by clarifying the essential notions, as well as to define new relevant 
terms, i.e. to give names to some (new) notions, when appropriate. A name cannot 
change the appearance or the properties of the named entity, but nevertheless, it 
has a great impact on people's attitude through associations that can be provoked – 
especially at the first contact with an entity. Improperly chosen or inadequate 
names can lead to misunderstandings and even misconceptions. As we shall see 
later on, names play an important role in communication, integration, 
standardization and other fields. We also use these names when we refer to the 
“building blocks of science” – notions, relations, facts, attributes and others. No 
“scientific house” (i.e. theory) can ever be built without such building blocks. For 
these reasons, special care should be taken when new terms are introduced or 
existing terms renamed. Due to the attempt to avoid invention of totally new 
words, the names chosen for some notions may seem strange at first glance, 
especially if considered out of context. 

Now, let us begin with the formal meaning of the terms model and modelling 
and then discuss some of their most important attributes. 

2.1 Models and Modelling 

Let us start with the most frequently used terms and consider their motivation and 
interrelations. 
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2.1.1 Definitions 

A definition is the enclosing a wilderness of 
idea within a wall of words. 

Samuel Butler 
Note-Books 

The word model is an overloaded term. For example, the Collins Cobuild 
Dictionary Sinclair et al. (1987), specifies fifteen meanings, with three of them – 
instances 1, 3 and 4 – being mostly relevant for our purposes: 

1.  A model of an object is a physical representation that shows what 
it looks like or how it works. The model is often smaller than the 
object it represents. 

 ...an architect's model of a wooden house. 
 ...a working scale model of the whole Bay Area... 
 I made a model out of paper and glue. 
 Model is also an adjective. 
 I had made a model aeroplane. 

 ...a model railway. 

2.  … 

3.  A model of a system or process is a theoretical description that 
can help you understand how the system or process works, or how it 
might work. (TECHNICAL or FORMAL) 

4.  If someone such as a scientist models a system or process, they 
make an accurate theoretical description of it in order to understand 
or explain how it works. (TECHNICAL or FORMAL) 

5.  … 
 
Such overloading of the term with different meanings requires a clear initial 

statement of how we shall understand this term within this study. Let us have a 
look at some more specialized (i.e. not so universal) definitions. 

In Stachowiak (1973), any object having the following three main distinctive 
features is viewed as a model: to be a representation of something, to be a 
simplification and to be pragmatic (in the German original they are called 
“Abbildungsmerkmal”, “Verkürzungsmerkmal” and “Pragmatisches Merkmal”, 
respectively). Actually, the first one seems to be not always required – cf. Section 
2.1.3.2 below. 

Yet another definition is found in Woolfson and Pert (1999): 
The essence of the model is that it should be a simplified 
representation of some real object or physical situation which serves 
a particular, and perhaps limited, purpose. 

Although these two definitions might seem different at first glance, what in the 
latter definition is expressed as “to serve a particular purpose” is formulated in the 
former definition as “to be pragmatic”. 
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In essence, each model is a purpose-dependent representation. According to the 
purpose of modelling, it might be required that different traits are represented or 
respectively ignored, therefore, we shall define model as follows: 

Definition 2.1: Model is a purpose-dependent, finite, simplified, but 
still adequate representation of whatever is modelled, 
allowing us to abstract from its unimportant properties 
and details and to concentrate only on the most specific 
and most important traits. 

The respective implementation may use different media or principles (cf. 
Section 2.4.2.3.1 below) and is neither substantial nor pre-defined. When the 
model is a representation of the object's traits and their interrelations by means of 
pieces of information (or data), we shall speak about informational models or data 
models. When these pieces of information are electronically representable values 
(numbers), we shall speak – depending on the context – about software models or 
computer models. 

To better understand the nature of models and modelling, we shall first of all 
examine how these notions are related, and how they depend on other factors. A 
somewhat humorous interpretation of what we are concerned with here is sketched 
in Figure 2.1. 

Modelling

Model

Modeller(s)
Modellee

 

Output
Input

 

Figure 2.1. Modelling: the “holy” trinity 

In a typical representation of a process, the assumption is made that somebody 
or something acts on something else (input) to create or achieve a result (output). 
Apparently, such a scenario would not represent the really important fact that 
processes are time-dependent, i.e. they “progress” with time. More precisely, it is 
the process of creation and development of models that is understood as modelling. 
No unambiguous generic (preferably: one-word) term exists for what occurs as 
input of the modelling process. Expressions like “object, product or process to-be-
modelled”, for instance, would be rather long and imprecise. As we have to refer to 
the input of the modelling fairly often, let us consider introducing a new term 
instead. The latter would be used as a generic term in all cases of modelling and 
especially in the lifecycles of both original and derived products (cf. Section 2.2.3). 
Having looked into the existing terminology as well as having considered the 
possibilities of making up a new, “artificial” term that would simultaneously be 
intuitive, short, well-known and, at the same time, not contradictory, I’ve come to 
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the conclusion that the word modellee will be most appropriate for my purposes. 
This term has the same root as model and modelling and in addition makes allusion 
to words with similar morphology and well-known meaning like employee (person 
who is employed), trainee (person who is trained), adoptee (person who is adopted) 
and many others. So we shall use the term modellee for referring to what is or will 
be modelled (the object of modelling). 

A conceivable approach to defining the term model is to enumerate whatever 
appears to be related to any thinkable model, and then show the relation between 
these enumerated “components” or attributes. A graphical representation of such 
an attempt is given in Figure 2.2. Since for the preparation of this picture we have 
abstracted from insignificant properties, concentrating only on the specific and 
important ones, we have eventually created a model of a model, or a meta-model. 

Model

Traits

Inherencies Represents a modelee
Ignores unimportant details (abstraction)
Usage is pragmatic

Control Model parameters (case&purpose dependent!)
Requirements for the model (case&purpose dependent!)

Main problems&wishes

Low dependency on other factors

Functionality of the modellee

of the model Inherent
acquired, modellee-extrinsic

core
auxiliary

 Organization

Purpose Supporting & improving the understanding of the matter

Allowing comparison of different solutions
Allowing analysis and prediction of: behaviour

characteristics

Providing a common basis for discussions and 
information exchange (argumentative framework)

Reuse

Adequacy
Integration

Model

 
Figure 2.2. Attributes of a model and their relations 

Of course, not everybody will accept the representation given in Figure 2.2 
without objections. But, depending on the purpose for which this meta-model is 
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created, different requirements are imposed on its representation, behaviour, level 
of detail and so on. Inasmuch as these requirements are case-dependent, no model 
can be perfect per se (or in general, or for all cases), but any model can be perfect 
for a given purpose. And the purpose of the meta-model in Figure 2.2 is to give us 
an idea what the main attributes of every model are, and how one could start to 
develop a model. In order to be able to show it in more detail, the organization of a 
model is presented in a separate picture – Figure 2.3. 

Model
Organization

Structure

Architecture

Interaction between
components

Component
interdependency

Important external relations

Composition

Stratification

Hierarchy

Monolithic
Compound Homogeneous

Heterogeneous
Logical
Physical

Levels
Depth

Paradigm

Platform

Style

Modularity
Holonity
Bionic
Object-orianted
Model-driven
...

SW base
HW base
Integration within the environment

None
Weak
Strong

Coupled
Decoupled
Uncoupled

To data & its derivatives
To software&hardware

Model
Organization

 

Figure 2.3. Model organization 
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Another more detailed representation of the most important participants of the 
modelling process and the relations among them is given in Figure 2.4. Such 
representation has some similarities with the conceptual graphs as they are defined 
in Sowa (2000, Appendix A), but the conceptual graphs possess greater expressive 
power. 

Modelling
    Input    

   Output   Model

"Modellee", archetype
(product, process, ...)

    Aims    Support of
the analysis

Support of 
the development

Support of the
improvement

   Control   Methods

Tools

Feedback

Capabilities Approach dependent

Domain dependent

Case dependent

Providing a common 
basis for discussions 
& information exchange

have influence on

impacts

have influence on

type, scope and extent depend on
Modelling

 

Figure 2.4. Participants in the modelling process and their interrelations 

Quite in the spirit of the model of a model given in Figure 2.2, we can prepare a 
model of the modelling process itself (cf. Figure 2.6), which will enable its 
systematic study. As we can see there, the result of the modelling process is a 
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(possibly compound) model. If the content of this monograph is brought in relation 
to the specificities of the modelling process illustrated in Figure 2.6, we can say 
that it focuses on information-technology aspects and approaches for efficient, 
platform-independent modelling in the area of mechatronics and mechanical 
engineering, based on an arbitrary web-browser, a (formal) modelling language, 
and a 3D visualization engine. 

2.1.2 Modelling Stages 

Modelling is a complex iterative process and has typically several phases or stages. 
Consider the following quotation from Duffy and Andreasen (1995): 

Phenomena models are primarily based upon observations and 
analysis of the “reality” of design and the use of the tools employed, 
and hence reflect “descriptive” models. Where appropriate, these 
models are then developed in more detail as information models and 
similarly as computational models and tools. At each stage any model 
can be compared or evaluated against any previous model in order to 
enhance our understanding and hence models. 

According to the graphical representation in Figure 2.5 based on Duffy and 
Andreasen (1995), the nodes in the bottom row of the figure can be viewed as 
modelling stages, with the reality being the origin of (computer) modelling, and the 
development leading from a phenomenon model through an information model 
towards a computer model. 

 

 

Figure 2.5. Design modelling research approach, after Duffy and Andreasen (1995) 

At a careful observation, many (nested) cycles can be discovered in Figure 2.5, 
and it is not easy to tell where the “beginning” is meant to be: when we have to do 
with cycles, the cycle-start can be everywhere. Note, however that two main types 
of activities exist during the development of any model:  
1. Essential (modelling) activities: improving the model and its adequacy by 

increasing the number of modelled properties, their accuracy and other 
essential qualities; and 

2. Auxiliary activities: “fighting” with the restrictions, limits and problems of the 
modelling approach used, methods, tools, etc.  

Thus, at each new stage some new model quality is achieved, but at the price of 
increased auxiliary activities. The efficiency of the modelling is directly 
proportional to essential activities and inversely proportional to auxiliary activities. 
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Figure 2.6. Specificities of the modelling process 
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The stages in Figure 2.5 are defined on the basis of “model metamorphosis” 
during model development. If, instead, the modeller’s activities were considered, it 
would certainly be possible during the model development to distinguish phases 
similar to those presented in Figure 2.7. 

Phases/Stages

5.Elaborating the (full) model

4.Preparing a concept

3.Assessing the suitability of the available 
approaches and choosing the best suited

2.Looking for available solutions
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2.1.(Ready-to-use) Submodels
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1.2.Problem localisation and formulation

1.1.Enumerating its esential traits and parts

Phases/Stages

 

Figure 2.7. Modelling phases and activities 

2.1.3 Purpose and Objectives of Modelling 

Ipsa Scientia Potestas Est 
(Knowledge is power) 

Francis Bacon, Religious Meditations, Of Heresies 

It is in the nature of mankind to strive for power in the most general possible 
sense – the ability to rule, govern or control every possible thing from the simple 
toy to the whole universe. For people of different professions this general “rule” 
sounds somewhat different – the politician strives for political power, the physician 
would like to have power over all diseases, the fireman wishes to be able to control 
each fire, the engineers pursue control over the production and so on. But the sense 
remains in all cases the same: to hold full control over the respective domain. 
Unfortunately, there are powers that we cannot (yet) control – like the four 
elements, the sun, the cosmic powers. In cases where uncontrollable power (often 
referred to as force majeure) is involved, the next most attractive and important 
option is the ability to predict the flow of the upcoming events and the near future. 
For instance, science and technology are not (yet) strong enough to prevent an 
earthquake or tsunami-waves, but the foreseeing of their oncoming, together with 
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the appropriate actions, can avoid almost as many casualties as its prevention and 
thereby avert calamity. 

Let us introduce definitions of the terms control and prediction, which will be 
adequate for engineering purposes. 

Definition 2.2: To predict means to know the causal connection 
between some event e0 and its consequence c0. We shall 
call e0 a forerunner of c0. 

Definition 2.3: To (fully) control a given object or system means to be 
able to put the system in any of its known states, 
whichever of them is desired. 

In many cases Definition 2.3 does not hold, but it is possible to avoid certain 
undesired states of the system. Such an ability is more important than it seems at 
first glance. For instance, the ability not to allow a system to reach its worst (or 
most dangerous) state is more important than the ability to switch this system from 
the worst state into any other state. We shall call the former ability blocking (or 
weak) control and define it as follows: 

Definition 2.4: Blocking control is the ability to recognize a forerunner 
and issue a reaction r0 to it in a way that avoids an 
(upcoming) undesired event or state of the system, as 
well as any undesired consequence. 

Since, according to this definition, the controller first waits for a given 
forerunner to occur and then issues a reaction, we shall call this kind of control 
passive control. Of course, in many cases the controller can act on its own – i.e. 
without waiting for any forerunner – in order to change the state of the system. We 
say then that the controller is proactive or exercises active control over it. The 
actions or reactions, issued for gaining or keeping control over a certain system or 
object are usually called commands. 

Both passive and active control can be possible either for all forerunners or for 
some of them, so we can speak about full or partial control. 

Definition 2.5: When for a given system and a person controlling it 
Definition 2.3 holds for any forerunner, this system is 
fully controllable by the mentioned person. 

Cases where a system is fully controllable by somebody are rather rare. 
Therefore, when we speak about control we typically understand a highly, but still 
partially controllable system. 

The ability to predict, exactly as the ability to rule or control, can exist on any 
level of scale between the macro-cosmic and the micro-cosmic level. Somewhere 
in the middle there is also a level that can be viewed as the engineering level, 
which is in the focus of this work. But is the modelling really related to power and 
prediction? If yes, how are they related? Well, neither controlling nor prediction 
are possible without the appropriate knowledge. The approximate interdependence 
of these two abilities on a priori knowledge is illustrated in Figure 2.8. 

So, the next question is how the knowledge about a given topic or domain is 
acquired and whether we could influence the acquisition speed. Let us discuss 
these topics with the help of Figure 2.9. Suppose that the abscissa in Figure 2.9 
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shows the time or, in some cases – the lifetime of a given domain or entity. Then 
the solid line, starting from the beginning of the coordinate system shows how our 
knowledge about this domain or entity changes with the time. Four different phases 
are denoted under the abscissa, through which the “dealing” with knowledge 
goes – passive and active learning, and passive and active use of knowledge. In 
addition, there are two areas surrounded with rectangles, whose line patterns are 
different. Each of these areas is annotated with text, describing the (specific) 
activity, which is possible only with an amount of knowledge greater than that 
corresponding to the knowledge curve at the lower left corner of the respective 
area. 
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Figure 2.8. Domain-related abilities to predict and control events as a function of the 
acquired domain-knowledge 

During the first phase (passive learning) knowledge is collected relatively 
slowly, mainly through perception – an activity that takes place during all four 
phases and thus exists throughout the whole lifetime; it is marked with a rectangle, 
bordered by a dot-pattern line. Perception can occur through any of the human's 
five senses, but most of it happens through observation. 

Observation helps us learn everything that can be seen, but since most of the 
objects are opaque, neither their structure nor the connections among their 
components/elements can be studied through observation. Imagine you are 
presented with an unknown to you until now electric torch, having no battery yet. 
How do you know which position of the switch turns the light on and which turns 
it off if there is no inscription? One possible way to tell is to put a battery in the 
torch and to try which position turns the light on, but this is already another 
activity – an experiment. 



www.manaraa.com

18 2 Modelling Basics 

    

Perception
Time0%

100%

Passive learning Active learning Passive use of 
the knowledge

Active use of
the knowledge

Experimentation

(purpose-driven perception)

Knowledge about 
the domain or entity

Severity of a possible error

D
et

er
m

in
in

g 
of

 c
au

sa
l c

on
ne

ct
io

ns
U

se
 o

f c
au

sa
l c

on
ne

ct
io

ns

 
Figure 2.9. Knowledge acquisition and use 

Having collected enough basic knowledge, an (intelligent) individual is capable 
of conducting some experiments, observing simultaneously the causal connections 
between his own actions and the subsequent reactions of the entity, increasing thus 
additionally his knowledge. In the case of the electric torch the basic knowledge is 
that it can light that it works with a battery, and that the light can be turned on and 
off through the switch. The action would be turning the switch and the reaction – 
changing the state of the light from on to off or vice versa. As soon as you can 
connect each position of the switch with a state – either lighting or non-lighting – 
you have learned to use the switch (and the electric torch). Now assume that a 
friend of yours has been with you and has watched attentively your actions all the 
time. Would he also have acquired the same knowledge as you did? Well, almost: 
he would know which position of the switch turns the light on, but he would not 
know, for instance, how much force is needed for turning the switch. The point is 
that your friend's newly acquired knowledge is gained through passive 
experimenting, while you gained the same knowledge through active 
experimenting. In general, more knowledge can be gained through active than 
through passive experimenting. 

After sufficient experimenting, the acquired knowledge reaches another point at 
which the individual is able to control the entity to some extent (cf. Figure 2.8 
again, with the domain being the use of an electric torch), so that some immediate 
goals can be reached – e.g., turning the light on or off, changing batteries, etc. The 
acquired knowledge typically does not increase during controlling; instead, the a 
priori knowledge (e.g., from old experiments) is confirmed and increases thus the 
certainty of the controller that the known commands can put the controlled entity 
to certain states or prevent it from getting into undesired states. Only if something 
unknown happens – say (if we continue our mental experiment with the above-
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mentioned electric torch), the light suddenly does not go on anymore due to a burn-
out of the light bulb – this can be registered as a new possible state and thus 
increases marginally the domain knowledge. The knowledge how to return the 
system from an unknown state to a known one can be either still missing or 
generally available – e.g., pressing the reset button of any computer puts it into a 
well-known state. Thus, the controlling itself can lead to acquiring new knowledge 
only indirectly – through coming to unknown problems or situations, solvable 
(only) by means of experimenting. The last proposition raises a fundamental 
question: is it possible to gain knowledge by mental experimenting? A positive 
answer to this question would revolutionize the whole science by making many 
experiments needless. What would be possible for sure is to search the memory for 
patterns of similar but already solved problems, and then attempt to derive from 
any pattern found a solution for the current problem/task. 

Since in this phase the main activities are observing and experimenting 
activities together with some controlling, an appropriate name for the phase is 
passive use of knowledge.  

From another point of view, as soon as an individual has noticed the causal 
connection between two (types of) events he can predict what would happen after 
some known forerunners occur. Back to the example with the electric torch: after 
using it long enough one should know that a noticeable decrease in the light 
intensity means an approaching end of the battery's charge, i.e. it is possible to 
predict the need for a replacement in the near future, and to take care to have the 
battery ready at hand. The prediction itself does not increase the knowledge, but as 
soon as it becomes clear whether the prediction is true or false, the knowledge very 
often may increase3. 

The most important outcome of the phases passive learning, active learning and 
passive use of knowledge is the determining a causal connection in the given 
domain. After acquiring a reasonable amount of causal connections (50–80%), it 
becomes more and more important to use them for acquisition of additional 
knowledge. We shall call such activity an active use of knowledge and name after it 
the last phase in the learning process. The reasoning and more specifically the use 
of techniques like induction, reduction and deduction for acquiring new knowledge 
on the basis of available knowledge and information are typical examples of active 
use of knowledge. 

Let us summarize again the analysis of Figure 2.9: 
• Apparently, the activity leading to the highest learning speed is the 

“experimenting”. Clearly, well planned experiments can additionally 
increase the learning speed. 

• It is never possible to get 100% of the theoretically possible (or practically 
available) knowledge because it is impossible to learn everything through 
observation and experiments. Instead, the curve showing knowledge 
acquisition as a function of time provokes associations with the Pareto-

                                                 
3 It depends on the kind of prediction, though. If you predict that the next toss up would be 

a head, you would not know more after the coin falls tail. But if you predict, say, that 
increasing the pressure in the tyres of your car twice would prolong their life, and yet the 
first tyre explodes during the increasing, you would know more as a results of this 
experiment. 
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principle: in many cases it is possible to acquire about 80% of the 
knowledge about a certain domain in about 20% of the time. 

• The probability of each prediction coming true is proportional to the 
knowledge about the respective domain. 

• It is impossible to fully control anything that is not well-known (or learned). 
On the other side, only tasks small enough to allow knowing everything 
about them, can be automated. Assume the control (of a process) can be 
defined as a mapping of a set of input states – problems – to a set of output 
states – solutions. Since the automation can be defined as delegating the 
control or the decision taking to an artefact (device, software, combination 
thereof, or whatever else), the existence of such a mapping and the 
possibility of its implementation are crucial. The implementation is only 
possible if: a) the number of probable input states is countable and exactly 
known, and b) an onto-mapping M of the set of problems {P} to the set of 
solutions {S} is known, and c) M is realizable as an artefact. 

So, how could models help here? At least the following two reasons for using 
models are justified: 

a) Models can be used instead of real resources, at least during the early 
phases of the development, and thus make even the most intensive 
experimenting affordable and (financially) more effective. 

b) Models can save time when they are workable or when they allow 
automation of experimenting. For software models both conditions are 
fulfilled. 

In short, the objective of modelling is to increase learning speed and the 
amount of acquired knowledge (reason b) and simultaneously decrease the costs of 
knowledge acquisition (reason a), supporting thereby indirectly the abilities to 
predict and to control. On this basis are built concepts like Digital Factory, Virtual 
Factory, or Smart Factory: if anything that has to be build in reality – from a given 
product up to the factory producing it – is fully modelled, studied and optimized in 
advance, there is a great potential for saving time, money and other resources. 

Of course, there are other reasons why we need models, which are more or less 
directly related to the discussed abilities to rule and to predict. They will be 
discussed in the following section. 

2.1.3.1 Why are Models Needed 
There are so many reasons for using models that their complete enumeration and 
description is almost impossible. Nevertheless, let us try to consider some of the 
more important ones (cf. Figure 2.10). 

Models contain or reflect only the most important, for a given purpose, traits of 
whatever is being modelled. As a result, they reduce the complexity of the 
modellee and allow the modeller to ignore unimportant traits in order to 
concentrate on the essentials. Therefore, models crucially support and improve the 
understanding of the matter. Since the models are a simplified, finite representation 
of something, they are easier to handle. In many cases the only way for comparison 
of different objects, products, solutions, etc. is to compare their models. For 
instance, we (still) cannot compare two screws atom-by-atom, particle-by-particle, 
and this would not make sense either. But it does make sense to compare their 
diameters, lengths, pitches, number of threads and a couple of other purpose-
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dependent traits. Since these traits represent a kind of screw-model, it is enough to 
compare the models instead of the modellees.  

Why do we 
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Have simplified, finite representation

Offer easier handling than the modellee

Support & improve the 
understanding of the matter

Allow comparison of different solutions

Allow prediction of: behaviour

Provide a common basis for 
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and/or unavailable modellees

problems
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weaknesses

To make an idea concrete
Why do we 
need models

 

Figure 2.10. Some reasons to use models 

Another interesting application of models is the prediction of properties and 
behaviour. This prediction is based on the comparison of relevant characteristics 
with those of similar but already known objects, activities, etc. For example, 
whenever we see that a bolt and a nut have the same diameter, pitch and number of 
threads, it is possible to predict on the basis of previous experience that the bolt 
will fit into the nut. 

A careful look at Figure 2.11 reveals that the model is involved in two loops: 
gaining insight and applying it to the problem in order to solve it. Besides, the 
former loop is nested in the latter. The advantage of the “long way” from the real 
system through problem definition, target definition, model creation, experiment, 
analysis and so on, viewing the steps clockwise, is that the inner loop (gaining 
insight) allows one to collect the knowledge, necessary for the solving of the 
problem, much more quickly (cf. Figure 2.9 again!). Note that the more iterations 
are made in the inner loop the deeper insight would be gained, and the problem 
should be solved either sooner or better, or both. 

Another important reason for using models is to harness them in the problem 
solving process. A nice example of how this could be done is given in Nyhuis and 
Wiendahl (2004) and reproduced in Figure 2.11. 



www.manaraa.com

22 2 Modelling Basics 

    

 

Problem
definition AnalysisTarget

definition Experiment

Problem
solving

Model
application

Model
adjustment

Model
evaluation

Insight
articulation

Real
system ModelApplying 

insight
Applying 

insight
Gaining
insight

Gaining
insight

 

Figure 2.11. Model-based problem solving process, after Nyhuis and Wiendahl (2004) 

2.1.3.2 How Models Arise 
Some of the possible ways for creating a model are represented in Figure 2.12. 

In all cases, after a model has been created, it has to be represented in some 
way in order to make it useful. Without such a representation, the model creator 
cannot communicate the model to other people, which renders it hardly usable. 
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Figure 2.12. Processes leading to model inception 
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2.1.3.3 Models and Product Development 
It seems at first glance that development is a linear or straightforward process, but 
this is not really the case. The point is that the real flow of this process is difficult 
to represent. Indeed, attempts to represent development typically concentrate on 
the most important traits of the process and ignore the non-essential ones. In 
particular, models are indispensable for the product development, and the main 
reasons for using models can be summarized as follows: 

1. to support the decision taking 
2. to shorten the development time 
3. to minimize the development costs 
All three reasons are more or less interdependent (at least in the direction from 

reason 1 towards reason 3 – i.e. easier and faster decision taking can shorten the 
development time, which in turn reduces the costs.  

A compact explanation of reason 3 is given in Figure 2.13. The three curves 
reflect the nearing of the product's achieved properties to the requested properties 
of a product as the development advances. The right-hand solid-line curve refers to 
the normally developed and produced artefacts; the left-hand solid-line curve refers 
to a rapid prototyping and the dashed-line curve refers to a virtual prototyping – 
i.e., to the percentage of modelled product's properties. 
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Figure 2.13. Maturity of model and (real) product during their development, after 
Gausemeier et al. (2000) 

Why are these curves so different? There are several reasons for this. On the 
one hand, before an artefact can be produced, the respective production process has 
to be developed and implemented. On the other hand, for the production of the 
rapid prototype another technology is used, which leads quickly to a product, but is 
much more expensive. Due to specificities of the rapid prototyping technology in 
some cases the manufactured prototype does not have all properties or does not 
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have the same quality as the real artefact. This applies to the virtual prototypes (or 
virtual models) in an even stronger way: since they are immaterial, they always 
lack more properties than a prototype. Since the model is always simpler (by 
definition) than the modellee, its processing is also easier and much faster. 
Moreover, since development is a cyclic process, the time difference gained on 
each loop accumulates. Furthermore, the development of models (and especially 
software models) requires fewer resources than the development of the product 
itself or than the manufacturing of its (rapid) prototype, and can be therefore much 
cheaper. Consequently, it is affordable to make new iterations of the development 
cycle even with minimal corrections of the model, and the development progress is 
faster. 

Use of models is indispensable also in situations when products or processes 
are developed for still unknown application areas – e.g. spaceflights. 

In short, a careful look around confirms once again that the whole science is 
based on models. Without models it would be impossible to analyse, to 
communicate, to compare, to take decisions, to improve, to solve problems and so 
on. The question about the form of existence (cf. Figure 2.2) of a model is of a 
lower importance, as long as the model achieves its purpose. Accordingly, the 
capability to control the modelling (of everything and everywhere) can also be 
crucial for success. 
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Figure 2.14. Important milestones of the product lifecycle and their sequence 

2.1.3.4 Models of Product Development 
Since the shortening of the (product) development cycle and the improvement of 
product quality can be viewed as main purposes of the modelling, it is instructive 
to discuss this development on the basis of a simplified model. The first question is 
when the development of a given product starts. Assume that there exists 
increasing demand for a given product. After this demand reaches a certain 
threshold (i.e. after some delay), a formulation of requirements for the product 
begins. As soon as the requirements are considered complete, the (actual) 
development can start. With the development progress, more and more of the 
functionality of the product is finished, which means that more and more 
requirements are satisfied. Again, after reaching some threshold of functionality, 
mass production can start, followed – with respective delays – by marketing and 
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use of the product. With the start of the product use starts also the wear and tear of 
its instances, and during use, new requirements are posed. Thus, the loop is closed, 
and we can speak about the lifecycle of the product with its elements or milestones. 
A simple model, illustrating the sequence of the mentioned milestones is sketched 
in Figure 2.14. 

Some of these milestones are in antagonistic relations, e.g., demand vs. supply, 
or unsatisfied requirements vs. achieved (required) functionality. The latter is more 
interesting from a technical point of view: as soon as the formulation of 
requirements is complete, the development starts, and with the fulfilment of each 
required function or quality the number of unsatisfied requirements decreases until 
all of them are satisfied. At this point the number of unsatisfied requirements is 0 
and the required functionality is 100%, and the first development cycle ends here. 
At the latest with the beginning of the product use, though, new requirements can 
arise, which may cause the next loop of the cycle to start. A simplified model of 
this process is illustrated in Figure 2.15. 

unsatisfied requirements
required functionality

 
Figure 2.15. Delay between posing requirements and achieving the respective functionality 

Typically the number of requirements decreases exponentially with every new 
loop. This fact can be reflected in the model as illustrated in Figure 2.16. 

If we define model maturity as the difference between the unsatisfied 
requirements and (implemented) required functionality, the resulting graphical 
representation of the curve will be very similar to the upper curve in Figure 2.13. 
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2.1.4 Some (Unusual) Examples of Models 

Let us view some examples and see how they comply with the definitions, and 
decide which of them are models and which are not. Paradoxically, these samples 
show that people are modelling all the time, even if they are not aware of it. 

2.1.4.1 Text 
Strangely enough, the most often used models are text models. Let us first consider 
the single words: they are finite, simple and are “linked to” or describe more or less 
adequately something. For instance, any verb describes a process or an action; the 
verb alone is hardly sufficient to achieve an accurate representation, but it 
represents the most important trait of the action. Most nouns cause association with 
specific objects or even classes of similar objects – e.g., the noun “lathe” is 
normally associated with the respective machine tool. When somebody says, “I am 
running”, we can imagine that he is moving in such a manner that his body 
periodically has no contact with the ground. Thus, on the one hand it seems that 
most words can hardly be viewed as models. On the other hand, every word is 
related to some concept or notion in our minds, which is in turn a simplification or 
idealization of something and can, therefore, be viewed as the model of this 
something. 

unsatisfied requirements

required functionality

 

Figure 2.16. Fading in posed requirements and achieving the respective functionality 

Now let us consider an arbitrary (textual) description of something. No matter 
how detailed the description is, it could not describe every atom, every bit, every 
detail – simply everything – since the description would become infinite. Thus, the 
author of the description tries to describe the essential things first, then some less 
important and so on, until there is no reason to describe further (levels of) details. 
Two criteria are most often applied in deciding when it would make sense to stop, 
namely:  



www.manaraa.com

2.1 Models and Modelling 27 

    

a) it is clear that the description of more details would not contribute to the 
purpose for which the model is created; and  

b) the effort for describing more details would be greater than the achieved 
benefit. 

Thus, the description is a kind of representation of an object, it would become 
finite due to the outlined reasons, i.e. by applying one of the above mentioned 
criteria or both of them, and it would contain the most important traits of the 
modellee by ignoring whatever appears to be insignificant. Summing up, words 
can be viewed as models of notions, texts as models of ideas. 

2.1.4.2 Drawings, Sketches and Maps 
Similar reasoning is applicable to drawings, sketches and maps: they are finite and 
represent only traits that are important for a given purpose. Nevertheless, not every 
sketch is a model: the pen scratches, made by someone unconsciously – for 
instance, during a phone call – would seldom be named a model of anything. 

Maps4 of the same landscape or area made in different scales offer us a 
remarkable example of models with different levels of detail. An indispensable 
element of almost any map is the legend, where a correspondence between real 
objects and their representations on the map is defined. 

2.1.4.3 Pictures 
Pictures in the form of photographs, drawings, scans, etc., are also finite and 
simplified representations of something. Since they represent the outlook of 
something, they can be viewed as models of the respective outlook. In many cases, 
though, the outlook is not the most important property; in such cases pictures can 
hardly be called models. For instance, a photograph of a book can be a model of 
the appearance or of the design of a book, but not of the book itself.  

It is interesting to contemplate whether a photograph of the content of a book, 
with still readable text, can be viewed as a model of the book. At first glance, it is a 
finite representation of the content of the book. At a more careful viewing, it 
becomes clear that the real model of the book is the text of its content, while the 
picture is rather a representation of the model of the book and, in a sense, it can be 
viewed as a meta-model of the book. 

2.1.4.4 Bank Statements 
A bank statement is a textual document representing the financial transactions of a 
customer for a period of time (usually month or year). The question is if this 
statement, which is final and represents important milestones of the customer's 
financial or bank-related behaviour, could be viewed as a model of this behaviour. 
The answer can be figured out if the type of information available in such 
statements (amount transferred, date, source, destination) is compared with the 
“parameters” of financial behaviour – i.e. frequency of transactions; volume of 
month’s and year’s turnover; minimal, maximal and average value of transactions, 
etc. It is clear that these types of information are different. Therefore, although a 
bank statement can be used to organize a model of someone's financial behaviour, 
it cannot be viewed as its model. 

                                                 
4 We mean here geographical, geological and similar types of maps. 
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2.1.4.5 Itemized Phone Bills 
For similar reasons an itemized phone bill is not itself a model of a person's 
communicational behaviour, but rather could be used for building such a model. 

2.1.4.6 Model of a Circle 
The geometric figure circle is so well-known that having heard or read this word 
everybody can immediately imagine its specific shape. Therefore, if we are 
discussing geometric objects where the respective shape is important, the word 
“circle” can be viewed as a model of this class of objects, since it bears the most 
prominent trait of the class – its shape. 

In the majority of cases, though, we would like both to use the same model for 
the whole class and to be able to represent different specific objects (instances) of 
the same class without having to model them again. To achieve this we need to 
factor out everything that is specific for the whole class and make some 
characteristics serve as parameters, allowing us to instantiate arbitrary 
representatives of the class. Then, in order to be able to distinguish between 
different objects of the same class we need only to compare the values of the 
respective parameters. 

In the case of a (two-dimensional) circle we would need at least the radius, 
which can be represented by means of one number. Should we need to distinguish 
also between circles with equal radii, we could use in addition the coordinates of 
the circles' centre, which are a pair of numbers for each circle. Consider the 
hierarchical representation in Figure 2.17. The radius and the centre point are 
grouped and represented as properties. Further specifications account for model-
specific names, types of properties and validity rules (denoted as constraints). 

Model of a Circle

Definition

all Points equidistant
to a given (centre) point

Properties

Radius

Number

Name Value Constraint

R 1 >0

Centre point 

Two numbers

Name Value Constraint

x,y 0, 0.7 None

Model of a Circle

 

Figure 2.17. Simplified model of a circle 
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An interesting point for discussion could be whether the definition itself is a 
property or not. Later on we shall discuss other possibilities, but for the purposes of 
the current simplified model, let us leave it the way it is now. 

2.2 Model-related Terms and Notions 

The task of formalizing everything is like the 
construction of a medieval cathedral: it takes 
centuries to complete, and when it is done, 
someone else will have a plan for an even 
grander cathedral. 

John F. Sowa 
Knowledge Representation 

Numerous terms are used in the literature in connection with models and 
modelling. Some of them are already well known and established, some, still 
contradictory or simply not popular. In order to avoid misunderstanding, we 
introduce in this section the terminology to be used throughout this monograph as 
well as some characteristics and properties of models. 

2.2.1 Prototype 

In mechanical engineering, we often hear the term prototype in addition to the 
terms model and modelling. The definition in Sinclair et al. (1987), for example, 
puts prototypes in a strange relation to models, namely, prototypes seem to be 
restricted to models only, which is certainly not the case. “A prototype is the first 
model that is made of something; P. is used as a basis for later improved models”. 
In yet another dictionary, we read: “A prototype is a new type of machine or device 
which is not yet ready to be made in large numbers and sold.” And as a second 
meaning: “if you say that someone or something is a prototype of a type of person 
or thing, you mean that they are the first or most typical one of that type.” 
Obviously, the latter two interpretations are more precise and do not lead to 
contradictions. If we replace the word “model” with the word “instance” in the first 
definition, all three interpretations would become compatible. With this 
adjustment, we can adopt the following definition for the purposes of the current 
study: 

Definition 2.6: A prototype is the first instance that is made of 
something; P. is used as a basis for later improved 
instances. 

The prototype is typically a real material thing, but in some cases it can also be 
virtual – in the sense of imaginary or not perceivable by the five human senses. 
The possible combinations between the type of the prototype, the type of the 
mature product (or end product) and their “virtuality” are sketched in Table 2.1. 
We can see in this table that the strangest predicted combination would be to 
prepare a real (in the sense of material) prototype of a virtual end product. 
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A similar comparison of modellee types with prepared models demonstrates 
that in this case all predicted combinations are possible (cf. Table 2.2). 

Within any product's lifecycle the prototype comes clearly before the mature 
product. But on the basis of what is the “first instance” made then? And if we can 
model real objects, is it possible to model objects that still do not exist? And how 
should they be called? 

Table 2.1. “Virtuality” of prototypes and models 

# Mature product Prototype Possibility Plausibility Example 

1 real real yes yes (most 
common case) mock-up 

2 real virtual yes yes digital mock-up 

3 virtual  
(unperceivable) real5 hardly ? ? 

4 virtual virtual yes yes software 
 

Table 2.2. “Virtuality” of modellees and models 

# Modellee Model Possibility Plausibility Example 

1 real real yes yes (most 
common case) mock-up 

2 real virtual yes yes digital mock-up 

3 virtual  
(unperceivable) real5 yes yes 

sketch of a magnetic 
field? listing of a 

program? 
4 virtual virtual yes yes software 

 

2.2.2 Archetype 

It is possible to model everything – modellees can be existing and non-existing, 
real or virtual, abstract or concrete. Often the possibility to distinguish between the 
modelling of already existing and modelling of not yet existing modellees is 
crucial. The latter case is of special interest, since it is specific for every novel 
product or process. The models in such cases are successors of ideas, but in our 
view there is one additional intermediate stage between a new idea and the model 
or prototype of any future product: the archetype.  

In Sinclair et al. (1987) the term is explained as follows: “An archetype is 
something that is considered to be a perfect or typical example of a particular kind 
of person or thing, because it has all their most important characteristics.” 

The archetype can be viewed as a mature well-elaborated idea, which can 
create a clear vision of the modellee in a modeller’s head. It is a bearer of the 

                                                 
5 In this case “real” is used in the sense of “made of some material”. 
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inherent (or most important) traits and functions of the desired (or designed, or 
modelled) object, product or process. 

Definition 2.7: The elaborated idea that is (or has to be) modelled will 
be called archetype. 

Note that according to this definition, which will be adopted here, the archetype 
is always abstract or immaterial. 

2.2.3 Interrelations Among Important Terms within the Product's 
Lifecycle 

Now let us return to the modelling of real objects. Possible modellees (i.e. the 
objects to be modelled) originate either in nature or from organized manufacturing. 
An interesting question in the latter case (no matter whether the products are under 
development or are already mature) is which one is primary, the product or the 
model? This question is similar to the famous question about the primacy of the 
egg and the hen. Different viewpoints can obviously lead to different answers, but 
what remains viewpoint-independent is that there is a relation or connection 
between the two. To avoid contradictions and reduce the uncertainties related to 
these terms, let us consider Figure 2.18. 

 

Figure 2.18. Interrelations among idea, model, archetype and prototype during the 
development cycle of an original product 

Normally, at the beginning there is an idea. It is elaborated until there is enough 
information in it to prepare an archetype on its basis. On the basis of the archetype, 
a model is prepared. After that, through some manufacturing process, the model is 
embodied into a prototype. The prototype, in turn, is tested, improved and 
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optimized until it can be used as a pattern for mass production. During the 
production, many replicas of the pattern are made. Any of these replicas, their 
production itself, as well as the model, the prototype or the pattern could inspire 
new ideas or be used directly as modellee and thus initiate the lifecycle (or the 
development cycle) of a derived product, as illustrated in Figure 2.19. 

Figure 2.19. Interrelations between idea, model and prototype during the development cycle 
of a copied or derived product 

In certain cases, derived developments are desired and intended, in other cases 
they are not desired but hardly avoidable, and in the worst case copy modelling or 
copy production could even be illegal. To summarize, copy modelling is not 
necessarily a breach of copyright or stealing of intellectual property – it actually 
takes place in each development loop and helps to improve the initial prototype. As 
“normal” modelling – shown in Figure 2.18 – has a lot in common with inventing, 
it can also be named inventive modelling. 

Consequently, the answer to the question at the beginning of the section is that 
for inventive modelling the idea is prime, while for derived modelling the product 
(or object) is prime. This is true especially at the beginning of both processes – 
more precisely, for their first loop, since already for the second loop of the cycle, 
the case could become either mixed or transform into the “opposite” kind of 
modelling. 
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2.2.4 Process Models 

Nothing endures but change 

Diogenes Laertius 
Lives of the Philosophers 

2.2.4.1 Ambiguity of the Word “Process” 
Similarly to the terms “model” and “modelling”, the term “process” is used in 
many different contexts and refers to activities in totally different domains. In this 
text the focus will be on production-related processes (including modelling itself). 
We shall understand product to be a really existing object that is usually a result of 
a manufacturing process. We shall understand a product model to be a model of an 
existing as well as not-yet-existing product. Although virtual objects like software 
models, software, etc., can also be the result of “manufacturing” processes, they 
will be referred to with their specific names. 

Definition 2.8: A process is any non-empty and time-dependent 
sequence of interactions of two or more objects, leading 
to changes in (the state of) at least one of the objects. 

According to this definition processes are, for instance, the movement and 
changes in the orientation of an object (they can happen only as result of an 
interaction with the surrounding objects and are relative to them), changes in the 
structure or in the form of an object (usually as a result of applying mechanical, 
chemical or other forces). In the context of this work, we normally understand 
process to be a production-related one.  

There are three terms in Definition 2.8 that could need more discussion: event, 
time and interaction. We shall define the term event as any ascertainable change in 
the state of an object or system of objects. The second term, time, has a tight 
relationship with the events and helps us distinguish one event from another. The 
third term is interaction, usually defined in terms of an action causing a reaction: in 
particular, as a pair comprising the action of one object on another one, and the 
respective reaction (or answer-action) of the affected object. It could be useful to 
distinguish here two different meanings, though. In the context of Newtonian 
physics, the action and reaction are two forces that (can) exist only simultaneously; 
in the context of process control, it sometimes makes sense to view the action and 
the reaction as two events that are related, but – in general – happening at different 
times. 

2.2.4.2 Time 

Time is an illusion. Lunch time doubly so. 

Douglas Adams 
The Hitchhiker's Guide to the Galaxy. Chapter 2 

The main attribute of all processes, common to all of them, is their dependence on 
time. Although many great scholars have written about time, we shall try to 
introduce a short and pragmatic definition of this term: 
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Definition 2.9: For engineering purposes time can be viewed as an 
invisible but inherent characteristic of the universe, 
allowing us to correlate different events or processes, 
order them in a sequence and quantify the “distance” 
between them. 

On the one hand, we try to accomplish each (production) process in the shortest 
possible time. On the other hand, even if it were possible to work infinitely fast, 
and thus reduce the accomplishment time to zero, this would be rather impractical, 
since without time (time=0) we would lose the order of events, ending thus in 
chaos. Therefore, when there is no need to consider relativity theory, we assume 
axiomatically that: 
3. time depends on nothing (that we could influence); 

4. time advances with constant, greater than zero speed; 

5. time advances only forward; 

6. there are no interruptions in time; 

7. all processes are time-dependent. 
When all these assumptions hold, we can describe process flows or sequences 

as functions of time. 

2.2.4.3 Relations Between Product, Production and Process 
On the one hand, every product is a specific type of object. On the other hand, 
products are output of some kind of production. Production itself is a process. 
Therefore, process modelling implies also modelling of objects, or in other words, 
modelling of production processes implies product modelling, too. A simplified 
model of a production process is represented in Figure 2.20. 

Production process           

Raw material

Processor(s) (machine, worker, etc.)

Product
Input Output

Input

Energy Waste

Output

 

Figure 2.20. A simplified model of a production process 

With regard to the relation between process and product, this simple model can 
be viewed from at least three different perspectives, depending on the starting 
point: 
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8. given the process, analyse what can be produced and what raw material is 
needed; 

9. given the (required) product, find how to produce it and what raw material is 
needed; 

10. given a raw material, analyse how it can be processed and what can be 
produced. 

When two of the three elements are given, it is easier either to determine the 
third element or to make sure that no adequate third element exists. 

Process

Definition

Participants

Parameters

subject(s)/
actor(s)
object(s)

Components
Input
Output
Control

Process
classification

Flow
Steps(operations)

Dependencies
Intermediate results

Attributes
Properties

Characteristics changes

influence

influence

Process

 
Figure 2.21. A model of a generic process 

Process
classification

Stability
Stable
Labile

Indifferent

Predictability
(complexity)

Predictabile (simple)
Surprising (complex)

Concurrency
Sequential
Parallel (concurrent)

Flow normality
Normal

Equinormal

Time-related 
attributes

Finiteness

Discretness

Duration

Speed

Recurrence

Finite
Infinite

Analogue
Discrete

Temporary
"Eternal"

Constant
Variable

Structure-
related

attributes

Components/
parameters
interrelations

Component/
parameter
interdependency

Stratification

Strong
Weak
Coupled

Decoupled
Uncoupled

Yes
No

Compositeness
Monolithic
Compound

Yes
No

Hierarchy
Flat

Deep

Branching
Linear

Ramified

Absent

Controllability

Speed
Smooth
Start/stop

Quality
Smooth
Discrete (stepped)

Expences
Smooth
Discrete (stepped)

Process
classification

 
Figure 2.22. Example process classification 

In contrast to Figure 2.20, which is normally “read” from left to right, the 
generic model in Figure 2.21 is focused in the centre, i.e. it is to be “read” towards 
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the periphery, with the reading order – clockwise or counter-clockwise – playing 
no significant role.  

Compared to a function in the mathematical sense, which is a mapping between 
two sets – input and output – the process represents a similar mapping between (the 
elements of) an input set and an output set, but it contains a time component, i.e. 
any process needs or takes time. 

Processes can be classified according to different criteria. A very systematic 
classification from cognitive point of view can be found in Sowa (2000). Also, 
Sowa gives a very intuitive and mnemonic symbolic notation for different kinds of 
processes and for some of their elements – start, stop, branching, concurrency, etc. 
Another possibility, better suited (in my view) to the field of engineering, is 
illustrated in Figure 2.22. 

The development of every product and every process is influenced by a few 
major factors. When they are restrictive, we can speak about limitations or 
constraints, Dörner (1987) even speaks about barriers. An example of influencing 
factors is represented (in a self-explanatory way) in Figure 2.23. 
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Figure 2.23. Role of some factors, influencing product and process development 

In general, three main groups of questions should be asked in respect of the 
development of a (potential) product. They are given in Figure 2.24. 

When trying to detail the answers to these questions it is usually helpful to 
prepare and consider a (meta-)model of the product development to consider the 
factors influencing it. An example is presented in Figure 2.25. 
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Product 
development

What

Why

How

<Description>

Purpose

Demand/need

Can serve a purpose

Profit expected

Determine requirements

Search and analysis
of similar solutions

Elaboration (synthesis)
of a solution

Analysis

Modelling, simulation

Product 
development

 

Figure 2.24. The main questions, related to product development and some related notions  

MarketUse

Product development

Modelling Development ProductionDesign
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OutputInput

Analysis

Input

Modelee

Analysis

Input

Analysis

Input

SynthesisSynthesis Synthesis

OutputOutput Output

Actual version
of product

PatternPrototypeModel

Product replicas

Demand for quality

Demand

Demand for quantity

Product development

MarketUse  

Figure 2.25. Model of the impact of some processes on product development 

2.2.4.4 Simulation and Modelling of Processes 
An explanation of the term simulation in a general sense is found in Wikipedia 
Wiki (2006) as “an imitation of some real device or state of affairs. Simulation 
attempts to represent certain features of the behaviour of a physical or abstract 
system by the behaviour of another system.” A more complete definition of this 
notion that would be closer to our needs and understanding is adopted here from 
VDI-Richtlinien (2000)6: 
                                                 
6 In original: “Unter dem Begriff Simulation versteht man … die Nachbildung eines 

dynamischen Systems in einem Modell, um zu Erkenntnisse zu gelangen, die auf die 
Wirklichkeit übertragbar sind." (cf. VDI-Richtlinien (2000)). 
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Definition 2.10: The implementation of a dynamic system in a model 
suitable for experiments and the experimenting with 
this model7 to gain knowledge that can be transferred 
(back) to the reality. 

In this definition of simulation, we can distinguish the following essential 
points. The aim is not only to gain knowledge, but also to use it to act against weak 
points of the reality and towards its improvement. There are two phases in 
achieving this: (i) modelling of the dynamic system, and (ii) experimenting with 
the model. Consequently, the simulation relies upon modelling, where the 
modellee is a dynamic system. 

2.3 Modelling: Classification 
Known modelling approaches can be classified according to different criteria (cf. 
Figure 2.2), so let us consider some representative examples.  

According to the medium used for the model, we can distinguish between real 
(mock-up) and virtual (mathematical, informational, software/computer models, 
etc.) models.  

According to the application domain, we can distinguish between medical, 
psychological, linguistic, engineering, architectural, chemical, physical and other 
models. 

According to the application (sub-)domain, we can distinguish (e.g., within the 
engineering domain) between modelling in design, manufacturing, assembly, 
planning, marketing, service and others. 

According to the basic modelling tool, there could be (CAx-) system-based, 
language-based (UML, Express, natural language, etc.), and other modelling. 

According to the used (software) architecture, it is possible to have client–ser-
ver architecture, distributed architecture, high level architecture (HLA) and so on.  

According to the dominant method or approach, the modelling can be 
functional, object-oriented, feature-based, distributed, etc. 

According to the involved concepts, the modelling can be modular, agent-
based, holonic or other type. 

It is also possible to classify the modelling according to the characteristics of 
the resulting model, which are to be guaranteed or expected.  

A classification of several possible model types according to some key criteria 
is illustrated in Figure 2.26. 

2.4 Model Traits 
Ideally, each model would have or at least represent all the important traits of the 
modellee. In reality, the set of traits of the modellee and the set of traits of the 
model have a common subset, but are rarely identical (cf. Section 2.4.1.18 below). 
The traits that are specific to the model only, but not the modellee, can be called 
model-specific traits; they represent directly or indirectly the quality of the model. 
They depend on the modelling approach, on the methods used, on the chosen 
representation and many other factors.  

                                                 
7 The bold text is added from the author to make the idea clearer. 
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Figure 2.26. Sample modelling classification 
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The next section discusses some important model-specific traits that can be 
observed in most information models. 

2.4.1 Definitions 

It makes sense to define traits and their measurement in a way that will allow us to 
compare models of different types. This can be achieved if we use either relative 
values or a common comparison basis. For this reason, the formulae for calculation 
of the trait values have to be defined so that the range of the respective functions is 
between zero and one. 

2.4.1.1 Compositeness 
Theoretically, it is possible to distinguish between atomic (or elementary) models –
that contain no other models – and compound models – that contain other (atomic 
or compound) models. Besides, “contain other models” refers not to the physical 
aspect but to the organization instead, especially in the case of software models. 

It makes sense to define compositeness as having a Boolean value: zero for 
atomic modes and one otherwise. In practice, the software implementation of an 
atomic information model is not necessarily also atomic: for instance a point is – 
both as object in space and as (informational) notion – something single and 
undividable, but is usually modelled by means of at least two numbers – its 
coordinates in the coordinate system used. Similarly, the majority of software 
models are compound, too. The only exceptions are the models of some scalar 
attributes and properties of the modellees (like the point's coordinates above) – 
they are modelled by representing their value in a variable of an appropriate type 
(cf. Section 2.4.2.3.1). 

The dependency of any trait listed below on the model's compositeness is to be 
explicitly mentioned in its definition. 

2.4.1.2 Divisibility 
This trait describes the possibility to split a given model in several sub-models that 
would be equivalent (as a group) to the initial model. Such activity can be helpful 
when optimizing composite (and complex) models to factor out a sub-model that is 
common to two or more models. In this sense the value is Boolean, it can only be 
true (one) or false (zero). 

2.4.1.3 Accuracy 
The accuracy is a trait, showing how similar to the modellee the model is, and 
what deviations can be expected. Extremely rarely, the accuracy of a model can be 
measured directly or calculated – typically, for very simple models only or for 
separate model traits representable with numbers. Since (the elements of) software 
models are represented by numbers, it is important to know how accurately the 
numbers can be represented in a computer. The accuracy of a software model 
depends on the hardware and on the representation used. 

2.4.1.4 Actuality 
The actuality can be viewed as a time-dependent accuracy, meaning that if a 
modellee is changing with time, its model should be updated or actualized in order 
to remain useful and fulfil its purpose. In a dynamic environment it is extremely 
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important to work with the most recent information in order to be able to make 
proper decisions. On the other side, there is a desire to make the model's lifetime as 
long as possible (discussed in more detail later on – cf. Section 3.1.1.8). These two 
requirements seem contradictory at first glance – i.e. actuality of a model despite 
its long lifetime. Nevertheless, it is possible to achieve both of them relatively 
easily by well-directed and well-localized update of the non-actual components of 
the model. The actuality may change in two situations. On the one hand, it can 
“expire” if the modellee is changed or new information about it becomes available. 
On the other hand, new scientific discoveries can also make a model outdated and 
require its actualization. It can be necessary to assess the actuality in two cases: 
either to determine whether a given model needs to be updated or to determine 
which of two (non-numbered) versions of the model is more recent. 

2.4.1.5 Adequacy 
Whereas the accuracy reflects the mathematical and the numerical representation 
of a model, the adequacy reflects its logical and semantic correctness. 
Unfortunately, there is no way to measure or calculate this trait objectively. 

2.4.1.6 Aspect 
Depending on the purpose of the task at hand, each modellee can be viewed from 
different viewpoints or aspects. If a real three-dimensional object is viewed from 
two different viewpoints, some of the observed things can be the same, but most of 
them will be different or look different. Similarly, when modelling complex 
modellees, it can be useful to distinguish the inherent traits of their different 
aspects. For instance, when we are modelling the manufacturability of a given 
aggregate, we need to know all dimensions, the shape, the material, the pursued 
surface quality, among others. When another aspect is modelled, e.g., the 
functionality, traits of the modellee like structure, connections among the 
components and others become more prominent than material and surface quality. 
Each different aspect of a given model is usually representable as a distinct layer 
(cf. Stratification). 

2.4.1.7 Autonomy 
The ability of a model, object or system to react to events and changes in 
conditions or environment in an adequate and purposeful way will be called 
autonomy. The autonomy is a way of self-control. It can vary on a scale from zero 
(fully controlled or fully dependent) to one – fully autonomous. This property is 
rarely inherent to atomic (informational) models. It is natural to expect autonomy 
of a computer model when the modellee is also autonomous. All four combinations 
of such a pair (modellee and model) with regard to autonomy are indeed possible. 

The term autonomy refers mainly to the lifetime of the respective object 
(compare with independence below!). 

2.4.1.8 Cardinality 
In set theory, the number of elements in a given set is called cardinality. 
Analogically, this term will be used here to denote the number of sub-models or 
components within a model. Only the direct sub-models (i.e. without the nested 
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sub-models) have to be counted8. We shall consider elementary models as having 
cardinality zero. 

2.4.1.9 Changeability 
This property is a measure inversely proportional to the effort needed to change the 
model. It makes sense to use absolute and relative changeability. 

2.4.1.10 Compatibility 
One entity (part, product, model, etc.) is said to be compatible with another entity 
(usually of the same type) if the former has functionality and properties 
corresponding to some degree with those of the latter entity. Apparently 
compatibility can vary on a scale from zero (fully incompatible) to one (fully 
compatible or equivalent), although a compatibility below 50% should be 
classified, in general, as “incompatibility”. Some aspects of compatibility are given 
in Figure 2.27. Depending on purpose and application domain, though, some of 
these aspects become more prominent, others become negligible, but almost 
always one turns out to have a dominant importance. 
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Figure 2.27. Example classification of compatibility 

                                                 
8  In contrast to set theory, though, some cases exist where the cardinality of complex 

models should be calculated as the sum of the cardinalities of all components, applying 
this rule recursively, if necessary. 
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2.4.1.11 Consistency 
When all components (or sub-models) of a compound model are described and 
represented without contradictions – i.e. they follow the same approach, use 
compatible methods and organization – we shall say that the compound model is 
consistent. 

2.4.1.12 Dimensions 
Computer models have only one dimension – their size, measured in bytes or 
derivative units. Physical models (mock-ups) can have many dimensions. 
Nevertheless, when a model represents (or “derives”) some dimensions of the 
modellee, we speak about “x-dimensional-model” (xD-model), where x is usually a 
number from 2 to 4. 

2.4.1.13 Durability 
Durability is the ability of something to last. For materials, it depends on the 
material properties and on the conditions of use (environment, etc.). For immaterial 
things like concepts, ideas and similar, it depends on the durability of the 
respective host (see below for definition), medium or representation. Although we 
typically strive for high durability, it is not always good, since it could impair other 
traits like changeability, extensibility, flexibility and updateability (see below for 
their definitions). 

2.4.1.14 Dynamics 
The possibility for a model to (frequently) change appearance or behaviour is 
called dynamics. It is apparent that the model of any process will be dynamic. It is 
difficult to measure the dynamics. Although at the first glance it seems that there 
exist objects or models that do not change with time and thus should have 
dynamics=0 (or are static), a more careful look suggests that they actually contain 
two (or more) phases in their lifecycle that have different dynamics: creation (or 
genesis) – with dynamics=1 – and post-creation (or use, or existence) – with 
dynamics=0. Therefore, this trait is time-span-dependent. 

2.4.1.15 Extensibility 
This property describes whether it is possible to extend the respective object 
(model, product, etc.) with new functionality or other characteristics. Ideally it 
should be possible to infinitely extend anything (this could be denoted as 
extensibility=100%), but in the worst case extensibility is impossible 
(extensibility=0%). 

2.4.1.16 Flexibility 
In IEEE (1991) flexibility is defined as “the ease with which a system or component 
can be modified for use in applications or environments other than those for which 
it was specifically designed”. For the case of modelling we should redefine 
flexibility as the ease with which a model or a system of models can be adapted for 
(use in) purposes, not intended or foreseen during the initial development. Note 
that a new purpose may require new application, new environment or both. 

In some cases flexibility can be achieved only by means of extensions (cf. the 
definition of extendibility above). In cases when flexibility is inherent without need 
to implement extensions, the term versatility is used as a synonym. 
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The flexibility can be expressed with numbers between 0 (enormous effort for 
any adaptation) and 1 (no effort for adaptation to an infinite number of purposes). 
Yet, it can be neither directly measured nor easily calculated. Nevertheless, we 
have to distinguish the flexibility of a system or compound object (respectively – 
compound model) from the sum of the flexibilities of its components. The former 
is usually much lower than the latter! The point is that the purpose is a determining 
factor, but for a system is defined top-down, while the system's embodiment 
happens bottom-up. Thus, using a given system with a new purpose would usually 
mean having a new set of functional requirements, which means that many existing 
modules would remain unused. 

High reusability does not mean automatically high flexibility – if the object in 
question is reused again and again for the same purpose, it is simply durable, but 
not yet flexible. If a system can be used for a new purpose without adaptation, this 
means that either the new set of requirements is a subset of the old requirements, or 
the system exhibits great lateral functionality (cf. the respective section below). 

2.4.1.17 Functionality 
The functionality describes all capabilities of the model. It can be viewed as a set 
of all functions that a given entity can accomplish. Thus, it can be represented by 
the cardinality of this set, which is a number between 0 for no functionality and 
infinity for infinite, endless functionality. Actually, zero functionality would mean 
that the respective object is of no use, or – when the object is a model – that the 
model cannot fulfil its purpose. Therefore, the zero remains excluded from the 
range. The other end of the range – the infinity – is excluded too, since no object or 
model can accomplish an infinite number of functions. Thus, even the highest 
functionality will be a huge but countable number. 

The requirements for any artefact depend on its purpose and can also be 
described as a set of functions, which form the required functionality (Freq). Since 
not every artefact fulfils its requirements, the “normal” (or full or actual) 
functionality is sometimes called implemented functionality (Fimpl). It intersects the 
required functionality, as illustrated by the Venn-diagram in Figure 2.28. 

Required
functionality

Implemented 
functionality 

 
Figure 2.28. Functionality types 

Functionality that is required, but not implemented, remains due functionality 
(Fdue). It can be expressed as: 

implreqdue FFF −=  (2.1) 
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Functionality that is not required, but implemented – perhaps, due to 
specificities of the development process or due to other considerations – can be 
called lateral9 functionality (Flat). It can be expressed as: 

reqimpllat FFF −=  (2.2) 

Note that the subtraction in Formulae 2.1 and 2.2 operates on sets and is 
different from the normal subtraction.  

The cardinalities of the respective subsets can be expressed as:  

],0( reqdue FF =  (2.3) 

and 

],0[ impllat FF ∈  (2.4) 

Lateral functionality is very welcome when achieved as a side effect of the 
development (i.e., without extra effort or costs), since for some new purpose it can 
become a required functionality and therefore increases the flexibility (cf. the 
definition in Section 2.4.1.16 above). 

When the required functionality Freq is the same as the implemented 
functionality Fimpl or the former is a subset of the latter (Freq ⊆ Fimpl) it is said that 
the artefact fulfils (completely) its purpose. In such cases the cardinality of the 
subset of all due functions is zero (|Fdue | = 0). 

From the point of view of the importance of the specific functions that build the 
functionality, we can group them in two categories or subsets: basic functions, 
which implement the inherent functionality, and auxiliary functions, which 
implement functionality of lower importance. 

When still unknown objects or artefacts are investigated, one can distinguish 
between apparent functionality and (yet) hidden functionality. 

2.4.1.18 Coverage 
Given a modellee and its model made for a certain purpose, the following 
considerations can take place: 
11. Only the important for the respective purpose attributes and functions of the 

modellee have to be modelled (cf. Definition 2.1) and thus represented in the 
model. 

12. Typically, some attributes and functions of the model (would) concern only 
the model itself and not the modellee. 

13. Often there are attributes or functions that are not required, but nevertheless 
modelled. 

If we try to represent the set of attributes and functions of a modellee Amodellee 
and the set of attributes and functions of a model Amodel as a Venn-diagram, the 
result is illustrated in Figure 2.29. Apparently, the greater the intersection of the 
two sets, the better (approximation of the modellee is) the model. We shall call the 
                                                 
9 Other possible terms for this notion are side or excess or extra or unrequested 

functionality. 



www.manaraa.com

46 2 Modelling Basics 

    

intersection coverage, since it reflects to what degree the model “covers” attributes 
and functions of the modellee, and shall measure it as percentage. 

modellee

modelmodellee  
A

AA
Coverage

I
=  (2.5) 

Unfortunately, coverage gives a more quantitative than qualitative impression 
about the model, since the importance of single attributes and functions is different. 
Therefore, covering a large number of unimportant attributes and functions can be 
worse than covering a much smaller but more important number of them. 

Similarly to the functionality, the coverage can be represented by Venn-
diagrams as in Figure 2.29. 

Modellee

Model

 

Figure 2.29. Coverage and suitability of a model 

Clearly, better coverage means higher quality of the model. But with the 
increased cardinality of the set mentioned in 12 above, the inefficiency of the 
model also increases.  

Now let us consider the coverage of compound models.  

2.4.1.19 Compound Models 
The traits of any model depend on the traits of its components. Unfortunately, very 
few model traits are representable as a sum or superposition of the respective traits 
of the components or by means of a simple formula. 

Obviously, the set of all modelled attributes and functions can be expressed as 

U
M

1i
model-submodel

=

= iAA  (2.6) 

Similarly, when the modellee is also compound, its respective set can be 
calculated as 

U
N

1i
componentmodellee

=

=
i

AA  (2.7) 

Since in both cases overlapping between the sets of attributes and functions of 
the components and, respectively, of the sub-models can occur (cf. Figure 2.30), 
the cardinality of the top level sets will be smaller than or equal to the sum of the 
cardinalities of the components. The following formulae hold: 
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∑
=

≤
M

iAA
1i

model-submodel  (2.8) 

and 

∑
=

≤
N

i
AA

1i
componentmodellee  (2.9) 

finally, 

Coveragemax = granule_count * granule_area (2.10) 

a) c)

d)b)  

Figure 2.30. Coverage and granularity of compound models 

2.4.1.20 Granularity (Only for Compound Models) 
According to the Langenscheidt dictionary, the granularity is “a measure for the 
size of the standalone sub-operations in which a process or program can be 
divided for achieving parallel processing”10. 
                                                 
10 In the original: “granularity 1. Körnigkeit f; 2. Maß für die Größe selbstständiger 

Teiloperationen, in die ein Prozess oder Programm für die Parallelverarbeitung zerlegt 
werden kann”. Langenscheidt Fachverlag GmbH, München, 1999 
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In the context of modelling, granularity refers to the average size of all sub-
models of a given model. Since some models could have different dimensions, it is 
important to specify to which of them the word “size” refers in the previous 
sentence, i.e. which of them is taken for determining granularity. For instance, if 
the quality of the modelling is assessed, an appropriate measure for the “size” 
could be the coverage of each sub-model. If the efficiency of the memory usage is 
assessed, a better candidate for the dimension to be used could be the size of each 
sub-model in bytes. 

Since the granularity can be very useful for comparison or assessment of 
compound models, it will be discussed again later on. 

2.4.1.21 Homogeneity 
This property shows whether all sub-models have the same (type) of origin and are 
thus homogeneous and directly compatible with one another, or have different 
(types) of origin and are heterogeneous. Sub-models of the latter type typically 
require special effort for their integration.  

2.4.1.22 Independence 
This is a measure of the strength of the relations to or of the dependencies on other 
elements of the surrounding system or environment. It could be related to or 
combined with model properties like existence, functionality and others. 

Unlike autonomy (cf. the respective section above), independence is more 
related to the genesis of an object than to its lifetime. 

2.4.1.23 Intelligence 
This property is discussed in Section 2.4.2.3.1. 

2.4.1.24 Interchangeability 
If two entities (real or virtual) are fully compatible with each other (i.e. equivalent) 
and each can be used instead of the other without discernable loss of functionality, 
quality or anything else, we say that they are interchangeable. When a single entity 
is said to be interchangeable, it is meant that the design of the entity provides such 
a possibility and that spare parts of the same type are deliverable. 
Interchangeability is usually viewed as a binary (i.e. true or false) property (cf. also 
compatibility above). 

2.4.1.25 Openness and Modifiability 
The term openness refers to the possibilities of changing or extending any given 
model, and is implementation-dependent. The less functional a given model is, the 
higher is the probability that new desires concerning its functionality will arise, so 
that the model will have to be extended. The more complex a given model is, the 
higher is the probability that errors will occur or (for mechatronic systems) failures 
will happen during the exploitation, so that the model will have to be 
corrected/changed/repaired at the end user's place. For pure software models this is 
seldom a problem, but for complex mechatronic systems the distance to the place 
of use could cause problems (or at least additional costs).  

Increasing the openness of a given model has strong influence on many of its 
other traits. In most cases it is positive – extendibility, flexibility, integrability, etc. 
In one aspect, though, the change is negative: the increased openness of a model 
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makes it easier for the competition to imitate. For this reason many producers of 
software and software models sell their products as turnkey products. A necessary 
condition for achieving model openness is a clear definition of its interfaces. 
Depending on the model type, the interfaces can be mechanical, electrical, 
software, or any combination of these.  

2.4.1.26 Paradigm 
Webster’s dictionary gives the following definitions for paradigm: 

Example, pattern; especially: an outstandingly clear or typical 
example or archetype.  
… 
A philosophical and theoretical framework of a scientific school or 
discipline within which theories, laws, and generalizations and the 
experiments performed in support of them are formulated. 

Another explanation is found in Wikipedia: “From the late 1800s the word 
paradigm refers to a thought pattern in any scientific disciplines or other 
epistemological context.” 

One of the most popular paradigms in modelling is the object-oriented 
modelling (or object-oriented paradigm), related also to object-oriented analysis, 
object-oriented design and object-oriented programming. The main objection to all 
OO techniques is that the attribute “object-oriented” is somewhat misleading. 
Actually, the focus of these techniques is the grouping of similar objects into 
classes in order to factor out the common knowledge (data, procedures, etc.) about 
them and to increase the efficiency through reuse. Therefore, an attribute like 
class-oriented would be more self-explanatory. 

2.4.1.27 Platform 
By platform we shall understand the set of hardware, operating system and 
possibly additional software, providing an environment for a software product or 
software model to “live in”. 

2.4.1.28 Portability 
Portability is usually defined as the easiness of making a model usable on a 
different platform, cf. for instance Howe (2006). For the purposes of computer 
aided engineering I would define it as the (average) easiness of making a model 
usable on any possible platform. It is inversely proportional to the effort necessary 
to adapt the model for use on a new platform. This effort is proportional to the 
number of platforms and to the complexity of the model to be adapted. So it is not 
trivial to compare the portability of differently complex models. 

One of the ways to achieve (better) portability is to develop the models upon a 
layer (or basis) that is already portable. 

2.4.1.29 Effort for Porting to new Platform  
Very often it is necessary to make already existing model available and functioning 
on a new platform. The process is called porting or migration and the additional 
work to achieve this is the effort for porting (cf. Figure 3.5 in the next chapter). 
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2.4.1.30 Platform Independence 
We shall understand by platform independence, the ability of a software 
application or software model to run on different platforms without (or with 
minimum) changes for adaptation.  

According to Frankel (2001, p.25), the notions of main importance to achieve 
platform-independence have evolved from the 1960s until now starting from 
processors in the 1960s, through 3GLs (third generation languages) in the 1970s 
and 1980s, through middleware in the 1990s and MDA (model driven architecture) 
since the new millennium. 

2.4.1.31 Quality 
It is difficult to measure quality since it depends on the purpose of the model. The 
same model can be perfect for one purpose but totally unsuitable for other. For this 
reason, no mathematical definition will be given, but let us consider one guideline 
of The Association of German Engineers (cf. VDI-Richtlinien (1993)): 

The quality of the model is decisive for the quality of the analysis 
results. Only if the model realistically describes the system, it is 
possible for the subsequent model analysis to produce results that 
can be transferred to reality. 

2.4.1.32 Reliability 
According to Howe (2006) reliability (of a system) is “An attribute of any system 
that consistently produces the same results, preferably meeting or exceeding its 
specifications. The term may be qualified, e.g. software reliability, reliable 
communication.”. 
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2.4.1.33 Reparability 
During its use any model can get broken, malfunction or cease to be useful. This 
could happen due to internal problems (specific mainly to material models) or due 
to a critical change in the environment. The latter can impact on all kinds of 
models, including software models – a typical example was the problem of the 
2000th year11. We shall call reparability the possibility to restore the functionality 
of the respective model or the conditions allowing us to use it in accordance with 
the initially foreseen purpose. 

2.4.1.34 Reusability 
Before defining the term “reuse” as “second or multiple use of something”, let us 
see what we mean by “(first) use”. Some reasons for ending the “first use” of a 
product are listed below.  

                                                 
11 This problem caused calendar-related modules in some improperly designed software 

programs and electronic devices to function improperly due to overflow of the year-
counter. 
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a) There is no more need to use it for the initially foreseen or intended 
purpose. 

b) It gets broken or there is a malfunction. 
c) There is no qualified user anymore. 
d) Its use is not legal anymore. 

In case b) we can say that a purposeful or natural reuse can be pursued. In case 
a) one could try to reuse the product for alternative purposes. Since the aim is to 
achieve economic advantages or even profit, a suitable term here can be 
economically based reuse. 
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for start

Causes to end
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Figure 2.31. Conditions and prerequisites for (re)use of a product 

Depending on the flexibility of the product and – with a composite product – on 
the flexibility of the components, several possibilities have to be considered. Of 
course, in the best case every product is fully reusable and in the worst case – 
absolutely not reusable. In the majority of cases some subset of the components of 
any composite product can be reused. 
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2.4.1.35 Robustness 
In general, this term is used to denote the capability of a product to keep its 
integrity, usability and functionality despite negative and possibly unforeseen 
influences of the environment. In the context of computer science, the meaning is 
extended to cover not only hardware but also the software, including behaving 
incorrectly or – possibly intentionally – even illegally. 
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2.4.1.36 Scalability 
When a greater need for a given function can be satisfied by employing more 
instances of the respective model (or object), working in parallel, we shall speak 
about scalability. This trait belongs more to the result of a process than to the 
respective “processor” and does not always exist. For instance, we can use more 
cars for transporting more things, but more cars cannot help us travel faster – we 
need another quality. In other words, we could define the scalability as the 
possibility to trade quantity for quality. 

2.4.1.37 Size 
The size of a software model is the volume of memory it needs to be saved on 
disk – sometimes referred to as static size – or in the operating memory – also 
known as dynamic size. It is measured in bytes or their derivatives. The size of a 
software model is also an indirect measure of its complexity (cf. Section 3.1.2 in 
the next chapter). 

2.4.1.38 Time Dependency 
Time dependency explains whether a given model changes with time or not. It 
makes sense to define this trait as having a binary (or Boolean) value, since atomic 
models are either time-dependent or not. A compound model becomes time-
dependent if any of its elements is time-dependent. All models of processes are 
time-dependent, too. 

2.4.1.39 Universality 
This property shows for how many different purposes a given model is well suited. 
More purposes mean higher universality and vice versa. Although it can be 
tempting to develop models with universality as high as possible, it is not always 
rational to do so. And achieving a full universality – i.e. developing a model that is 
suitable for all thinkable purposes – is impossible. 

2.4.1.40 Updateability 
The more valuable the trait actuality of a given model is, the more important 
becomes the possibility to update this model regularly. The actuality of a non-
updateable model (e.g., a wood mock-up) can only decrease with time, while the 
actuality of an updateable model can be improved regularly and on demand. 

2.4.2 Organization of Models 

In order to understand models, their capabilities and interaction it is important to 
analyse how they are organized. The two most often used terms in this respect are 
structure and architecture of models. Some of their more important properties, as 
well as their interrelations, are visualized in Figure 2.32. 

Static models (e.g., a physical mock-up of an object) do not have organization – 
they have only structure and sometimes also architecture. Monolithic objects have 
neither structure nor architecture, but they still can have static functionality and 
relations with the environment. Software models are usually dynamic models, 
having always structure, functionality, architecture, external relations (interfaces), 
and are unique in the sense that they have a programmable behaviour. For these 
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reasons we shall say that they have organization too. Many authors use the terms 
organization and architecture as synonyms, but for the above-mentioned reasons I 
consider the architecture a component of the organization. 
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Figure 2.32. Organization of software models 

2.4.2.1 Structure 
The structure of a model describes its components and the (static) relations among 
them. Only compound models have structure. 

2.4.2.1.1 Inherencies 
The structure of a model refers mainly to its current (or already achieved) state in 
the model's lifecycle. It can be (and usually is) changed between the iterations of 
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the development process. The structure of a software model is always changeable, 
but this is not true for existing non-software models, e.g., for mock-ups. 

2.4.2.1.2 Structure-related Aspects of Models 
The structure can be viewed from several viewpoints or aspects. 

2.4.2.1.2.1 Composition 
This attribute describes how the models are built. The simplest models are the so-
called atomic or elementary models. They are monolithic or not dividable, having 
thus no structure but being used in building all other (non-atomic) models. Atomic 
models are often used for modelling properties of a modellee that are representable 
as scalar values. 

Assuming that several models are available, they can be grouped according to 
different criteria. A group can be useful for easier reference to all objects 
simultaneously or for defining and performing operations on all elements of the 
group at the same time. Depending on the purpose, different criteria can be chosen. 
Grouped models can come from the same library or developer. They may be 
independent from one another or even be hosted on different platforms. 

Models comprising other models are said to be compound models. For instance, 
the model of a circle in Figure 2.17 has (among others) the properties radius and 
centre point. The former property can be viewed as a model of a scalar, the latter as 
a model of a point; therefore the model of the circle itself is a compound model. 
Any compound model can be viewed as a group of models (e.g., the radius and the 
centre point can be viewed as a group of models, belonging to the same compound 
model), but not every group is a compound model – e.g., the group of all models, 
created by the same modeller are not necessarily parts of a (larger) compound 
model. 

Often we have to model several objects (or modellees), which do not belong to 
one another but are interacting within a given process or are somehow related, and 
we need to model this relation. In such cases, we speak about system of models. If 
the involved models are physically or geographically distributed, but still interact 
with one another, they can be referred to as a distributed system of models or a 
system of distributed models. 

2.4.2.1.2.2 Stratification 
Another structure-related aspect of models is their stratification. It is inherent to 
some compound models and reveals the existence of several layers in their 
structure. The criteria for stratification are very interesting from a scientific point 
of view, cf. Figure 2.33. 

Since every model is similar to the modellee, it is natural for a model to be 
layered if the modellee is layered too. Nevertheless, all combinations between the 
two are possible, as illustrated in Table 2.3. 

In some cases the modellee can be viewed from different viewpoints and thus 
exhibit different aspects. From an organizational point of view the aspects can be 
represented either as different layers in the same model or as different standalone 
models. An important characteristic of the different layers is that they are always 
connected in a certain way. In the example for case #2 in Table 2.3, for instance, 
the values of the three colour components are connected with one another so that 
they form together the modelled colour. 
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In general, there are properties that are represented in a single layer, in all 
layers, or in a subset of layers. We shall call the modellee properties that are 
present in (almost) all layers core properties, those that are present in at least two 
layers – essential properties, and the rest – aspect-specific or auxiliary properties. 
It is obvious that the core and the essential properties can be used to build inter-
layer-connections. They play an important role in integration of separately 
modelled aspects. 

(Example) Criteria (Example) Layers

Layer
(grouping 

or
distinctive 

feature)

Spatial

Outer

Downward

Mechanical

Structural

Organizational

Electronical

Level

Software

Role

Relations

...

Function

Inner

Intermediate

...

Domain

...

Associativity

Deepness

...

Intermediate

Uppermost

Lowermost

...

Upward

Sideway

...

Visualization

Mathematical

Interface

...

Processing

Auxiliary

...

Controling

 

Figure 2.33. Criteria for defining layers 

2.4.2.1.2.3 Hierarchy 
The hierarchy is an attribute of the structure, which describes the systematic 
character in the order of the components and their relations. It can be said that a 
hierarchy is vertically divided in several levels, whereas each level can contain one 
or more components. In many cases we have to do with nested structures of 
models, in which hierarchical structures are clearly recognizable. A simple 
hierarchy is given in Figure 2.17. 
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Table 2.3. Stratification of modellee and model: possible combinations 

Stratification of 
the: 

# modellee model Possibility Plausibility Example 
1 no no yes yes sculpture of a man 

2 no yes yes yes all colour models 
(RGB12,CMYK13) 

3 yes no yes yes clay model of a car 
4 yes yes yes yes car and a model car 

 

2.4.2.1.2.3.1 Levels of Hierarchical Structure 
Levels are the biggest components of each hierarchical structure. Splitting of 
sophisticated systems, models or objects in several levels, where each level 
consists of approximately the same number of objects to deal with, is an often used 
method for hierarchical structuring. It simplifies the manipulation of both the 
separate levels and the objects within each level. 

The same holds for sophisticated models, but sometimes the number of levels 
in the model is not equal the number of levels in the modellee – it can be both 
greater or smaller. One example of a “Multi-dimensional Meta-modelling 
Architecture” is given in Jeckle (1999, p.11). He describes five level of a 
modelling hierarchy: 

• M -1: Instance 
• M 0 “Reality” 
• M 1: Modelling language 
• M 2: Meta-language (“Grammar”) 
• M3: Meta-meta-language (“Meta-grammar”) 
Again there is discussed the use of the XML Metadata Interchange Format 

(XMI format) within the four layer Meta-model Architecture Jeckle (1999, p.14).  
Depending on the purpose and the point of view, the same structure can 

sometimes be interpreted either as layered or as hierarchical (levelled). For 
instance, depending on distinctive characteristics, the group of models 
clothes(skin(muscles(skeleton))) can be viewed either as nested, hierarchical 
structure or as models belonging to the different layers beauty, protection, 
movement and support. 

2.4.2.1.2.3.2 Depth of Hierarchical Organization 
This characteristic can give us an impression of the complexity and the possible 
minimal and maximal number of elements in a hierarchy. It can be used either to 
show the relative position of an element or to denote the depth of the whole 
hierarchy. The model in Figure 2.17, for instance, exposes a hierarchy of depth 6. 
                                                 
12 RGB: method for representing any colour as a mix of the primary colours red, green, blue. 
13 CMYK: A colour model that describes each colour in terms of the quantity of each 

secondary colour (cyan, magenta, yellow), and “key” (black) it contains. The CMYK 
system is used for printing Howe (2006). 
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The minimal possible depth is one, which implies that the organization is flat or 
there is no hierarchy. There is no restriction on the maximum depth, but the 
complexity of organization rises exponentially with each new level in the 
hierarchy. 

2.4.2.2 Architecture 
This term is so ancient that it is usually viewed as already known and is rarely 
defined. One of the few definitions that can be found is given in Wikipedia Wiki 
(2006): 

Architecture (in Greek αρχή = first and τέχνη = craftsmanship) is the 
art and science of designing buildings and structures. 

The literal translation makes an allusion to the fact that many creators have 
imitated already existing artefacts, since this is easier than creating a totally new 
artefact. Often the first artefact has already established a pattern or even a norm 
that is simply followed by the others. 

2.4.2.2.1 Inherencies 
We can think of three properties that are inherent to any architecture. It defines 
how the subcomponents one level below the top level are to be put together. This 
depends on the pursued results. In fact, changes are always possible, although more 
and more difficult with time. 

2.4.2.2.2 Architectural Aspects of Models 
Several aspects of model architecture are clearly distinguishable: the model 
structure, the integration within the environment, the modelling paradigm, the 
platform and the methods to be used. 

To summarize, the architecture can be defined as the combination of concepts, 
approaches, methods and techniques that are used in the initial building phase of 
any model, system, or other compound and complex object, and therefore plays a 
crucial role in determining its most important traits and its entire future – 
development, use, maintenance, re-use, etc. 

2.4.2.3 Important External Relations 

2.4.2.3.1 Relations (of Software Models) to Data and its Derivatives 
On the lowest level of all kinds of information and knowledge structures is the 
data. Each of the levels above can be viewed as a data derivative. Since these 
derivatives play an enormous role in modelling, we shall explain briefly some of 
them. 

2.4.2.3.1.1 Data and its Derivatives 

2.4.2.3.1.1.1 Data 
We shall understand data to be strings of (ordered) symbols. These symbols are 
represented in computers by numbers, and in turn, the numbers are represented by 
binary digits or bits. Apart from bits, the numbers are the smallest “building block” 
in the representation of data and data derivatives – including algorithms – in a 
computer. An example of such a string of symbols is “3.1415”. 
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2.4.2.3.1.1.2 Meta-data 
The meta-data is a connection or relation between groups or pieces of data. Given 
the strings of data “5.003” and “5.02”, we can connect them into a relation, for 
instance by the sign “smaller than”: 

5.003 < 5.02 

Thus, the “<” symbol has special meaning and is meta-data in this case. 

2.4.2.3.1.1.3 Information 
The information emerges from interpreting data. Interpreting means that each piece 
of data and meta-data is connected or put into a relation with already known facts 
as well as with all other pieces of data. Thus, the example above would be 
interpreted as putting two numbers in a relation, saying that the second one is 
greater than the first one. To achieve this, the interpreter (human or machine) 
should have some a priori knowledge – i.e. to be able to read the numbers and to 
understand the meaning of the sign “<”. This knowledge is often called context or 
background knowledge. 

Since the context always plays a crucial role by gaining information from given 
data, another possible definition for information is data in certain context. Thus, 
when hearing the (incomplete) expression “to be or not to be…” people, who are 
experts in different domains, can interpret it differently. A fan of Shakespeare 
could see an allusion to the famous phrase of Hamlet; a philosopher could think 
about The Question of Douglas Adams' book Life, the Universe and Everything, 
and a mathematician could write it down on a piece of paper as 2b | ⌐(2b) and say 
“this is always true!”. 

Another possibility to define the term information is as a combination of meta-
data and (groups of) data that are to be connected/related, for instance: 

π ≈ 3.1415 

Such a combination of data and meta-data is usually named an attribute-value 
pair. In representing more complex information it is possible to nest attribute-value 
pairs by using a given pair as the value of another one. A sample graphical 
representation of nested attribute-value pairs can be seen in Figure 2.34. 

When the value of an attribute-value pair contains just data (i.e., there is no 
nesting), this pair can be named basic or substantial attribute-value pair. 
Independently of their representation, basic attribute-value pairs can be viewed as 
the smallest units of information. 

2.4.2.3.1.1.4 Meta-information 
Meta-information is information about other information. For instance, the node 
“Invariable properties” in Figure 2.34 is meta-information and denotes that all 
nodes below it are invariable for the whole class of objects of the circle type. 

2.4.2.3.1.1.5 Knowledge 
We shall call knowledge the ability to gain new information from already existing 
information or data. For instance, knowing that the circumference of all circles is 
equal to 2πR, and that the radius of a given circle C is R=1, we can conclude that 
the circumference of C is equal to 2π. 
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Another possible way to define knowledge is to view it as the union of the 
meta-information and the pieces of information that have to be connected. 
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2.4.2.3.1.1.6 Intelligence of a Software 
Intelligence is a quality that is inherent mainly to human beings and is usually 
related to thinking and especially to the ability for reasoning on the basis of a 
priori knowledge. 

We perceive and rate intelligence mainly based on behaviour. But what is, 
actually, behaviour? If we define the set of all activities of a given person or object 
as behaviour, it is possible to distinguish between two main behaviour types: 

c) passive behaviour: reactions to external influences (coming from the 
environment or from other objects); 

d) proactive behaviour: actions, initiated for some internal reasons and 
having – intended or not – impact on other objects (i.e., causing their 
reactions); 

Of course, a mix of both above-mentioned types is also possible and can be 
referred to as either mixed behaviour or simply behaviour. 

Strictly speaking, it is almost impossible to meet pure proactivity as defined 
above. In practice, when we say about a human that he is proactive we usually 
mean that he shows initiative. In turn, taking the initiative from an individual can 
be viewed as attempt on his part to predict or anticipate the next action towards 
himself and prepare for it or even initiate the appropriate reaction in advance. 

Since any reaction can cause another reaction, often one simple activity 
initiates a chain of interlinked actions and reactions – i.e., interactions. From the 
point of view of an external observer, the life of any object can be viewed as a 
chain of interactions with its environment. Note that according to the definition 
above, activities having negligible or no influence on other objects (e.g., breathing, 
digesting or even thinking itself), are not considered proactive. Both thinking and 
reasoning are themselves activities, internal for every individual. Therefore we can 
rate them and estimate how intelligent they are only after the result of the 
reasoning is communicated to us by some activity – at least by speaking. 

Now let us turn to the software. On the one hand, it is obvious that any software 
possesses some (kind of) behaviour. On the other hand, the possessing/exposing 
behaviour alone is insufficient for being intelligent. In regard to humans we would 
say that somebody's behaviour is intelligent after we compare it with either another 
person's or with our own (supposed or real) behaviour in a similar situation. Thus, 
we can state that a) there is no absolute intelligence and b) intelligence is relative 
and can be discovered only in comparison with something. In regard to software, 
usually similar reasoning is applied: when we say that a program is intelligent, we 
mean that in a given situation it either behaves better than most programs with 
similar purpose, or attempts to behave like a human being who experiences a 
similar situation. The most well-known test in this area is the test proposed by Alan 
Turing and named after him Turing (1950). This test is based on a chain of 
questions and answers (interactions). It should help one to decide whether a given 
machine or program can think and, consequently, can be considered intelligent. Up 
to now, no computer/program has passed this test; why should we then discuss 
intelligence of a software systems? The point is that on the one hand, the Turing 
test gives only a binary answer whether a given computer (system) is intelligent; 
on the other hand, each travel begins with the first step and we have to do it, if we 
want to reach the destination. Therefore, we need some other measure of 
intelligence in the meantime until intelligent machines become available. For 
engineering purposes we do not have to start with fully intelligent machines. 
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Anything more than “not intelligent at all” can lead to improvements and savings 
in the respective area. 

We shall view a product or process model as being intelligent if it possesses at 
least one of the following capabilities: 

e) to behave/react as the modellee or simulate its reaction when the user 
simulates acting on it; 

f) to guess what (re)action is desired/needed in any given moment and either 
propose alternatives or perform it immediately (cf. the description of 
initiative by human's behaviour above); 

g) to find, determine or request any missing data or information alone; 
h) to recognize invalid data or information and correct it alone. 
The more of these capabilities a given model possesses, the more intelligent it 

is considered. On the other hand, of two models, the one that can complete more 
tasks with less effort of the controlling/requesting user or program is considered 
more intelligent. The effort could be measured either as number of necessary 
instructions or as the time spent to give them. 

Apparently, neither models drawn on paper, nor models made of clay or other 
workable materials can be given behaviour and, therefore, they cannot become 
intelligent. The only model type to which intelligence can be granted is the 
software model. 

In general, proactive behaviour would require more intelligence from a model 
than passive behaviour, since the initiative implies own desires resulting from 
thinking or reasoning. Computer science, though, is not expected to achieve such 
advances in the next decade. Therefore, we concentrate on passive behaviour, since 
it is simpler to implement. But as mentioned above, passive behaviour alone is not 
sufficient to achieve intelligence. Turing (1950) says: 

Intelligent behaviour presumably consists in a departure from the 
completely disciplined behaviour involved in computation, but a rather 
slight one, which does not give rise to random behaviour, or to 
pointless repetitive loops. 

Two types of passive behaviour are distinguished: reactions to commands 
(leading to a desired result that is known in advance) and reactions to other events 
(all actions without commands). It is clear that reactions to commands 
(“disciplined behaviour”), which is immanent for every software product, cannot 
represent intelligence. 

2.4.2.3.1.1.7 Wisdom 
Wisdom is empirical information (experience), complementing the available 
knowledge and intelligence and making possible or increasing the probability to 
take proper decisions in yet unknown or not explicitly foreseen situations. 

2.4.2.3.1.2 Models for Representation of Data and its Derivatives 
We have defined data as strings of symbols, and each symbol is represented in the 
computer as an integer number. There are no (more) problems with representing 
symbols as numbers after the adoption of the Unicode standard, since the number 
of symbols used is finite. But how should the numbers themselves be represented 
when their number is infinite and no computer has infinite memory? Each pupil 
knows that the number of different fractions is infinite even in small ranges like 
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this between 0 and 1. Then, how is the finite number of symbols, plus the infinite 
quantity of numbers, represented in the finite computer memory? The answer is 
simple: by analysing the different application areas, and using a model of the 
respective range of numbers, which is appropriate for the given purpose. These 
models are called data types and have the inherencies illustrated in Figure 2.35. 

Data type

Each instance has finite size Fixed
Variable

All instances have the same core properties

Defines a mapping between range of numbers 
and a range of bits/bytes in the memory

Models the numbers within the application area
with an accuracy adequate for the purpose

Defines specific operations with and 
actions on the instances of the type

Data type

 

Figure 2.35. Inherencies of a data type 

The simplest data type is dedicated to representation of Boolean values (true 
and false). Since there are only two possibilities, a single bit14 would be sufficient, 
but due to technical considerations, usually a whole byte15 is used. The 
representation of a finite set of consecutive numbers is commonly achieved by 
means of the data type integer or its derivatives. This data type has a typical size of 
2, 4 or 8 bytes, depending on the implementation. The number N of consecutive 
numbers in the representable range R is directly dependent on the size S of the data 
type (in bytes) in the specific case, and is calculated with the following formula: 

8*2SN =  (2.13) 

Thus, with an integer data type variable of size one byte we could theoretically 
represent 256 consecutive numbers. If the numbers to be represented have a sign 
(i.e. the range is zero-symmetric), one bit has to be reserved for the sign 
representation. In this case, since the zero is “sign-neutral”, i.e. can have both 
signs, the integer data type should either be able to represent +0 and –0, which is 
redundant. So one number less can be represented, or the implementation should 
perform some checks for representing +0 and –0 as the same state of bits in order 

                                                 
14 A bit (abbreviated b) is the smallest information unit used in computing and information 

theory. It can be either one or zero and thus can represent any two mutually exclusive 
values or states like true or false, “on” or “off”, etc. 

15 One byte (abbreviated B) has eight bits. Often used with prefixes like kilo, mega, giga, 
etc. 
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to avoid the reduction of the amount of representable numbers by one. The size of 
this data type is typically restricted to 8 (sometimes also to 10 or more) bytes, and 
thus the largest representable symmetrical range R is  

R∈ [–28*8, 28*8]  or  R∈ [–264, 264] (2.14) 

or 

R∈ [-18446744073709551616, 18446744073709551616] (2.15) 

Although fairly large, this range could be insufficient for some applications. So, 
to represent either larger ranges or rational numbers with a finite number of bits, 
another data type is used: floating-point number. Assuming that we reserve one bit 
for the sign S, p bits for the significand16, representing the most-significant digits of 
the number, and e bits for the exponent, the mathematical model of the range of 
numbers R representable by floating-point data type with size=1+p+e bits will be 
as follows (all numbers in decimal base!): 

]2*2*1,2*2*1[ 2021 ee ppR −−∈  (2.16) 

Here the significand is represented by p2 , the factor e2 is the exponent and the 
base is 2. The symbol ∈ in the last expression should be interpreted with a 
“restriction”: since p and e are integer numbers, not all numbers within the given 
interval are representable (e.g., no number between 2² and 2³ is representable and 
exponentiation is used in the representation of both the significand and the 
exponent), therefore R is only defined through the representable numbers. Thus, 
only a small subset of the real numbers can be represented in a (digital!) computer 
exactly, and the rest are represented as the nearest rational numbers. A more 
detailed description of the floating-point representation and its problems would go 
beyond the scope of this work, but can be found, e.g., in Goldberg (1991). 

2.4.2.3.1.3 Data-derivatives in Software Models 
The software models are built-up from data, data-derivatives and (possibly) code. 
Therefore, many of the model traits depend on the traits of the underlying data and 
its derivatives, as well as on the chosen representation. For that reason, it should be 
kept in mind that most of the properties of software models are represented through 
real numbers, and when these numbers are approximated in their computer 
representation, the respective models could be badly influenced. Software models 
can use additional data for specialization (concretization) and communication. 
Software models can use bound or built-in code (as a special kind of data) for 
implementing intelligence. 

2.4.2.3.2 Relations to other Terms and Software and Hardware Components 
The information technology (IT) has huge influence on all computerized 
production methods. Since the rapid IT developments during the last decade have 
introduced numerous novelties and respective new terminology, let us consider 
some definitions and assumptions that would facilitate the further discussion. 

                                                 
16 According to Goldberg (1991), “This term was introduced by Forsythe and Moler 

[1967], and has generally replaced the older term mantissa.” 
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2.4.2.3.2.1 Platform 
The term platform denotes the hardware and software used as a basis for either 
development or use of a given software model. When a model is used on a 
platform that differs from the platform it has been developed on, we speak about 
cross-platform development. 

2.4.2.3.2.2 Host 
Since the platform for the use of one particular software model may differ from the 
platform for its development, the possibility to distinguish between these two 
platforms is crucial. The platform where a given model can be used (or where the 
model can “live”) is referred to as host. The more platforms that can be used as 
hosts of a given model, the more portable or platform-independent this model is. 
The lower the number of components or layers required for the host, the higher the 
autonomy17 of the respective model.  

2.4.2.3.2.3 System 
The term system is overloaded with different meanings related to different areas of 
the science. A definition of this term that resembles our understanding closely 
enough is given in Wikipedia (cf. Wiki (2006)): “A system is an assemblage of 
inter-related elements comprising a unified whole. From the Latin and Greek, the 
term “system” meant to combine, to set up, to place together”. For our engineering 
purposes this definition has to be slightly modified in order to reflect the specifics 
of the majority of systems – both models and modellees – in the field of 
engineering. 

Definition 2.11: A system is an assembly of inter-related components 
(subsystems, modules or elements) built together in a 
unified whole to serve a certain purpose. 

In this sense, any compound model is also a system. 
The purpose of a system together with the art of the components and their 

connections and relations determine most of the system's properties. A simplified 
model of a system, based on its most important properties, is presented in Figure 
2.36. A taxonomy of some more important system-related attributes, terms and 
activities is presented in Figure 2.37. 

2.4.2.3.2.4 System Interfaces 
A system is typically connected to the outside world through interfaces – the set of 
all discernable input and output “channels” of the system that ensure cross-
boundary communication with the outside world (cf. Figure 2.36). Apart from 
systems, all subsystems, modules and other components have interfaces, too. A 
system of hardware components has hardware interfaces, while a system of 
software components has, respectively, software interfaces.  

Since the software “lives” in hardware (cf. Section 2.4.2.3.2.2 above), the 
properties of all software components – including interfaces – are strongly 
influenced by the properties of the underlying hardware. Software models either 
“live” in software systems or form themselves systems of software models.  

                                                 
17 Cf. the definition in Section 2.4.1.7. 



www.manaraa.com

2.4 Model Traits 65 

    

S

S3

S   the complete system
Si  subsystems of  S
S2i subsystems or elements of  Si
Ii   inputs (input values)
Oi outputs (output values)

I2

I3

I1 O1

O2S32

S34

S33

S31

S1

S4

S2

S5

Legend:

 
Figure 2.36. A simplified model of a system, advanced after Pahl and Beitz (1993) 
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4.3.2.Rapid Prototyping
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System

 
Figure 2.37. A taxonomy of some system-related attributes, terms and activities 
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In the domain of software programs or models, according to OMG18 or Booch 
et al. (1999), “every interface should represent a seam in the system, separating 
specification from implementation”. Let us call it OMG-interface to distinguish it 
from its typical meaning in CAx-context. 

A system that possessing interfaces is sometimes called an open system. 
Theoretically it is also possible to have the opposite type of system – a closed 
system, but since such systems cannot communicate with the outside world, they 
are not of interest for our study (except if we are inside such a system), and are not 
discussed further. 

The systems can be classified according to different criteria. An example 
classification is given in Figure 2.39. 

2.4.2.3.2.5 Systems Engineering 
Systems engineering (also known as systems design engineering) is a relatively 
new (originating around the time of World War II) branch of the science with focus 
on the definition, realization and characterization of complex, but at the same time 
successful systems. Some of the well-known subfields of systems engineering are 
safety engineering, reliability engineering, interface design, cognitive systems 
engineering, communication protocols, security engineering. 
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Figure 2.38. Inherencies of the systems engineering 

2.4.2.3.2.6 Software Model vs. Computer Model 
The terms software models and computer models are often used. Before we make 
use of them, we shall clarify what is similar and what is different between them. 

A software model is an implementation of an information model (cf. Figure 
2.5). It is a kind of representation (or mapping) of the information model by means 
of data structures and algorithms. Typically some formal languages are used to 
code the algorithms and the respective data structures into programs. 

                                                 
18 Object Management Group, Inc. Cf. http://www.omg.org/ 
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 Systems
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Figure 2.39. Sample classification of systems 
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Therefore, any software model can be viewed as a set of programs and data. 
Software models can be kept or transported on a medium, but the medium alone is 
not enough to allow the model to “come to life”. This can be achieved only when 
the model is loaded in some hardware, and the control is transferred to it. Thus, we 
can say that the model “lives” in its host – typically, a computer. 

Without software no computer can directly be used to represent anything. 
When we say that something is “modelled with computer” we mean: “modelled by 
means of software running on a computer”. Thus, a computer model is nothing else 
than a software model that is loaded into a computer and activated there. In other 
words, both terms can be viewed as synonyms referring to a system consisting of 
hardware, programs and data. The main difference is that each of the terms stresses 
a different aspect of this kind of modelling, e.g. the use of software or the use of 
hardware, with the respective specificities. 

2.4.2.3.2.7 Computer Aided Systems 
A Computer Aided system or in short CA-system (also spelled without dash) is a 
complex software system, dedicated to solving tasks in a specific subject area. The 
subject area is typically a phase of the product lifecycle (design, planning, 
manufacturing, marketing, etc.) or an activity existing in many phases (e.g., quality 
control, product-data management) and its name is usually reflected in both the 
long and the short forms (e.g., Computer Aided Manufacturing system or CAM 
system). The alternative short form CAx-system is often used as a collective name 
for all possible short forms, where “x” is a placeholder, matching the name of any 
phase or activity. The “computer aided” is not really an obligatory part of the 
name, since it is implied for numerous activities. Thus, nobody would speak about 
word-processing without some kind of computer, but the respective “computer 
aided” system – the word processor or word-processing system – meets the 
definition and should be considered as belonging to the group of CAx-systems, too. 

When several CAx-systems are used to automate related activities and are 
developed from the same producer they are often referred to as software packages, 
software packets or suites. 

2.4.2.3.2.7.1 CAx-model 
The usage of CAx-systems has become so common during recent decades that 
many people tend to forget: most CAx-systems create as one of their outputs a 
model (CAD-model, DMU-model, FEM-model, etc.). This model is often either 
the most important or the only result produced. 

Some of these CAx-models are product models, some of them are object 
models (i.e., something that is not going to be produced, but is used as part of other 
models) and some are models of processes. Therefore, the term CAx-model is used 
in the text as a generic term, referring to models of any of the types mentioned. 

2.4.2.3.2.7.2 CAx-system Centred Approach 
For each product several different product models, related to different phases or 
aspects of its lifecycle, are created and used. Typically, the model related to a 
given phase or aspect is prepared by a dedicated (CAx) system and can be 
modified and further developed only by identical (i.e. having the same 
type/dedication and from the same producer) or compatible (i.e. capable to read the 
models in their initial format) system. Even more important is that the models, 
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created from a CAx-system, can be used mainly within the system-creator, 
sometimes – within another (foreign) system and almost never – alone. In other 
words, any model “lives” only within a given CAx-system, and it in turn “lives” 
only within the respective hardware. For these reasons I shall use the name system 
centred approach (in short, SCA). The system where a specific model lives is 
called its host or host system. 

In contrast to the object-oriented approach, where everything is centred around 
the concept of an object, and where the objects’ methods (algorithmic description 
of operations on objects) are typically defined only on the objects of the same class 
(i.e. type), CAx-systems operate on diverse types of objects but can perform only a 
given group (or class) of operations19. Thus, a general term for referring to all 
types of CAx-systems together could be “operation-oriented system”. Since in the 
computerized support of production we more often speak about classes of 
operations having to be performed than about classes of objects having to be 
processed, we have one more reason to say that conventional computer aided 
production is system centred. 

2.4.2.3.2.8 Data Integration 
The process of data integration includes collecting all data “pieces”, putting them 
in the same (or in compatible) format and possibly performing other actions to 
ensure that they are usable together. 

2.4.2.3.2.8.1 Data Transfer, Data Exchange 
The term data transfer/exchange refers to all actions that have to be performed in 
order to make a model created or existing on a given platform, work on another 
platform. These actions include the physical transfer of the model and possibly 
conversions (translation) on different levels. One could speak of unidirectional and 
bi-directional exchange, as well as exchange among multiple platforms. Typically, 
data exchange uses a file as entity, is unidirectional (i.e. it is transfer and not real 
exchange!), occurs offline and not so often as the data processing itself. 

2.4.2.3.2.8.1.1 Models of the Data Exchange and their Qualities 
As any other process, the process of data transfer or exchange can also be 
modelled. The resulting models can be divided into two main groups, aiming either 
at process development and realization or at its analysis and possibly – requests for 
improvement. A short classification of data exchange is given in Figure 2.40; more 
different models and a discussion of their qualities can be found in Avgoustinov 
(1997). 

2.4.2.3.2.8.1.2 “Interface Pressure” 
Suppose that a “force” called demand for data exchange exists, and that the 
descriptive potential, defined in Avgoustinov (1997) as the cardinality of the set of 
elements of the source language, symbolizes the “area” on which the force is 
applied. Then we could use the metaphor “interface pressure”, which (exactly as 
normal pressure) is proportional to the force and inversely proportional to the area. 

                                                 
19 This does not mean that the object-oriented approach is not used in CAx-systems; it is 

simply applied on a different (lower) level. 
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Similarly, it is possible to say that the target system has “interface resistance” that 
is also proportional to the demand for exchange, and inversely proportional to that 
part of the descriptive potential which is utilized in the models to be transferred. 

Classification
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2.2.Common format
2.3.Conventions
2.4.Meta-norms
2.5.Standard format

2.1.1.Native
exchange
2.1.2.Converter
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of the data
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Figure 2.40. An example classification of the data exchange. Reworked and extended, after 
Avgoustinov (1997)20 

2.4.2.3.2.8.2 Data Sharing 
Data sharing is a general term used to denote the process of making data available 
to more than one user or system. In contrast to data exchange there is no typical 
entity. Only needed data is accessed and the sharing occurs on demand, online, 
multidirectional and even multiple times per processing. Since typically only very 
small parts of the source model are needed, accessing only them and only on 
demand makes the process much more efficient than data exchange. 

2.4.2.3.2.9 Component 
We shall refer to any at least logically separable part of a model, product, system 
or any other compound object as a component. When a component is not 
compound, we can call it also an element. In the domain of software programs or 
models, according to OMG as in Booch et al. (1999), a component is “A physical 
and replaceable part of a system that conforms to and provides the realization of a 
set of interfaces.”  

                                                 
20 Slightly different notation is used in the cited publication for the two terms, denoted “*" 

in Figure 2.40, but the actualized notation (as given in the figure) seem more adequate to 
me. 
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2.4.2.3.2.9.1 Integration of Components 
On the one hand, components (both software and physical) are designed to be 
integrated into systems and also to be interchangeable. On the other hand, they 
cannot be combined arbitrarily. The process of achieving effective interaction 
(including communication) among components, as well as interaction of the user 
with these components independently of their location, host, state, etc., is called in 
this study component integration. 

2.4.2.3.2.9.2 Component-based CAx-system 
Any CAx-system that is built up from software components is called component-
based CAx-system. According to Kilb and Arnold (1998) “… using a system based 
on the CAx object bus, there is no longer a need for file based data transfer 
between different integrated systems. Only the necessary representation 
information of the data models has to be transmitted as CAx objects through the 
CAx object bus.” The problem here is that the “necessary representation 
information” has not only to be transmitted but – depending on the case – also 
converted to the respective format! 

2.4.2.3.3 Relation to Suitability, Relevance, Adequacy, Reusability 
The components and their organization and granularity have a strong influence on 
many traits of the system that contains them. Below are enumerated some relations 
of the components (or componentization) to some of these traits or to other notions 
of interest; in all formulas f(…) symbolizes a function of something, whereas F 
denotes some kind of functionality (e.g., a set of functions), explained by an 
appropriate subscript; after some formulas are given their ranges. 

Suitability=f(form, granularity) (2.17) 

If all functions composing the functionality are equally important and their 
implementation is either full or null, suitability can be expressed as the ratio 
between the cardinalities of the set of (fully) covered functions and the set of 
needed functions. 

Suitability=|Fcovered|/|Fneeded| [0, 1] (2.18) 

Since usually some functions are more important than others, the above 
formula should be extended with weight factors for each functions. To keep results 
within a normalized range (i.e., within [0,1]) the sum of all weight factors should 
be equal to 1 (or 100%). 

Suitability=f((coverage - needs)/needs) [0, 1] (2.19) 

The gaps between the granules (i.e., the uncovered areas) decrease the 
suitability and together with the excess functionality, form the inefficiency of the 
system. 

Adequacy=f(overlaps, shortage, excess) [0, 1] (2.20) 

It can be reasonable to use the inadequacy instead: 
Inadequacy=f((overlaps + shortage + excess) / needs) (2.21) 

The reserve (or spare) functionality can be expressed as follows: 
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FReserve = Ftotal – Fneeded (2.22) 

Analogously, the redundant (or excess) functionality can be expressed as a 
function of the doubled (or overlaped) in different components functionality: 

Fredundant = f(Foverlaped, Fneeded) (2.23) 

2.5 Model Representation 

After its elaboration, each idea has to be represented somehow. The representation 
allows us to communicate the model to others, to save it for later use and even to 
discover things or relations among them that were invisible or not obvious before. 
When the modellee is not an idea, but something really existing, the situation is not 
very different: the main difference is that the modeller first “gets the idea” and then 
prepares a representation, reflecting the most important and relevant-for-the-
purpose properties of the modellee. 

2.5.1 Reasons for Discussing the Representation 

Apart from the fact that for software models the representation has great influence 
on the efficiency, compactness and other characteristics of the model, there are 
other reasons for discussing the models' representation: 

• very often models are mixed up with one of their representations; 
• improper representation could lead to confusion or loss of information; 
• some models represent not a single entity/modellee, but a whole class of 

similar entities (modellees); we shall call such models parameterized; 
• the model's representation is non-abstract (real) in contrast to any software 

model itself. 
Very often models have more than one representation – e.g., if the same model 

were drawn twice, but in two different colours, we would get two representations 
of the same model. But we should not confuse different models of the same 
modellee with different representations of the same model: if we represent some 
modellee once as a text and once as a drawing, these would be two different 
models of the same modellee. 

On the other hand, some models can have different views or aspects – for 
instance, a three-dimensional (3D) model can be viewed from different viewpoints; 
although each viewpoint can be represented on paper as a 2D drawing or snapshot, 
they remain different 2D representations of the same 3D model. 

2.5.2 Classification of the Representation Types 

The representation of a model can depend on many different things – medium, 
method, changeability, dynamics and others. The representation can even change 
during the model's use. Since each representation type has its advantages and 
disadvantages, the modeller can choose the type most appropriate for the purpose. 
Therefore, we say that each representation is purpose-dependent. Sometimes – 
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especially with respect to multi-purpose models – the modeller can choose to 
provide several representations, so that the user of the model is able to choose the 
most appropriate for the moment or for the respective task representation.  

We shall distinguish between two different types of model representation: 
internal and external. 

The internal representation concerns how a given model is represented within a 
software system or within a computer, and is implementation dependent. For 
instance, the internal representation of the simplified model of a circle from Figure 
2.17 can be as short as three numbers, connected with the knowledge that they 
represent the radius and the coordinates of the centre point, respectively.  

The external (or observable) representation of a software model is usually a 
dynamic representation, depending on the values of the model data at the moment. 
Figure 2.17 itself is an external representation of the (parameterized) circle. It 
should be noted that the external representation is usually based on the internal 
one. 

Within the internal representation we distinguish between model data (or 
parameters) and model invariance or model knowledge. 

The model data is different among the instances of the modelled class of 
entities and is used to create distinguishable representatives of the class. It is 
almost always included in the model saved on a medium to guarantee its 
persistence. 

Model invariance can be of two subtypes: programs and metadata. A program 
can be viewed as data, describing one or more algorithms. It can describe 
operations on real data or on placeholders. At runtime the placeholders are 
replaced with the actual values of the parameters. 

The metadata describes the relation among the data elements at the lowest level 
(the parameters) and is usually implemented by means of data structures.  

On the next level the relations among the metadata can be described by means 
of meta-metadata – cf. Figure 2.17 once more. Since we can always describe the 
relations among elements of one level by means of metax-data on the next higher 
level, we can speak about metadata of different degree (cf. Section 2.4.2.1.2.3.1 
Levels of Hierarchical Structure above). 

2.6 Integration of Models 

The majority of devices, machines and other products are actually complex 
systems built up from separately produced components. These components can be 
of pure mechanical, electrical, or electronic nature, or they can also be intermixed. 
When users observe and use them as a whole – i.e. the product – there is no need to 
speak about integration from the user's point of view. From the manufacturer's 
point of view, however, all components have to be assembled or built together; this 
process can be viewed as integration. Therefore, when a compound product is 
modelled, depending on the purpose of the model, it could be natural and useful 
first to model each component alone and after that to integrate all these models in a 
compound model of the product. But what is integration? According to Lutters 
(2001), there are countless definitions of integration. One more reason to define 
again what should be understood under integration in the present work is that none 
of the known definitions is perfect, including this in Lutters (2001): “the 
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facilitation of mutual cooperation and interaction between distinct functions in the 
manufacturing environment”. Weak points in the last definition are the lack of an 
aim in the definition and the word “facilitation”; a better attempt would be to use 
“accomplishing” instead. Our approximation for a more general definition could be 
the following: 

Definition 2.12: The integration of two or more (manufacturing) 
components is the process of making them work on one 
and the same task or contribute to achieving one and 
the same outcome. 

How exactly integration will be achieved – whether the components will be 
“physically joined” or “obey the same control”, or just the results of their work will 
be joined – is a question of secondary importance. In other words, the integration is 
not an end in itself: either the result, achieved after the integration of two models, 
is better than the sum of the results of the two non-integrated models, or such a 
result cannot be achieved at all without integration. 

In the simplest case integration of two models would be to achieve their 
simultaneous use within (or from within) the same environment (hardware, 
operating system, application software, etc.). For more sophisticated dynamic 
systems, though, making the communication between the models involved and the 
interaction (of the user) with them effective, independently of model location, host, 
state, etc., is also indispensable. 

2.6.1 Integration Classification 

The integration can be classified according to different criteria. Perhaps the most 
important criterion is the type of components that have to be integrated – real or 
virtual, material or abstract, etc. – since this can affect most of the other criteria. It 
is apparent that the method for integration of the components of a real car will be 
different from the methods for integration of the models of the same car 
components. 

The technique used for achieving the integration can serve also as a 
characteristic of classification of integration techniques. An example is given in 
Figure 2.41. 

Integration techniques
on the modelling level

Model exchange

Online tool
connection

Modelling 
language

Description
elements

Systems of
simultaneous

equation

Topological
descriptions

Program
(function)
libraries

Partial 
integration
of models

 

Figure 2.41. Some integration techniques, after Gausemeier and Lückel (2000) 

A sample classification according to several additional criteria (inherent 
integration traits) is given in Figure 2.42. 
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Figure 2.42. Example for a possible classification of the integration 

2.6.2 Models, (Software) Applications and their Integration 

Computer programs (a.k.a. software programs) that aim to solve user-specific (and 
not system-specific!) problems are often called software applications. They reside 
on top of the operating system and are very often used to: 
14. control some local-computer-related process like printing, visualization, 

communication, etc.; 

15. control some process that is not related to the host computer, but to business or 
some other part of real life – production, transportation, commerce, etc.; 

16. model and simulate different real processes; 

17. support various processes otherwise. 
Exactly like many other things that have structure or are part of a structure, 

applications may need to be integrated. Even if we consider only case 16 above, 
models of sub-processes have to be integrated to achieve a simulation of the full 
process that is modelled. In the case of modelling, simulation or control of 
complex processes it can be necessary to integrate many applications of different 
type, different origin, and different sites within a given enterprise and even located 
in different enterprises. In similar cases an often used term is enterprise 
application integration. One of the popular definitions is given in Wikipedia Wiki 
(2006): 

Enterprise application integration (EAI) is the use of software and 
architectural principles to bring together (integrate) a set of enterprise 
computer applications. It is an area of computer systems architecture 
that gained wide recognition from about 2004 onwards. EAI is related 
to middleware technologies such as message-oriented middleware 
MOM, and data representation technologies such as XML. Newer EAI 
technologies involve using web services as part of service-oriented 
architecture as a means of integration. 
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Achieving integration – or even better, integrability – is often more important 
than achieving good coverage or good functionality. Again in Wikipedia Wiki 
(2006), the following is said about the role of the integration: 

Without integration, enterprise computing often takes the form of 
islands of automation, where the value of individual systems is not 
maximised because they are working in partial or full isolation. 
However, if integration is carried out without following a structured 
EAI approach, many point-to-point connections grow up across an 
organization. Dependencies are added on an ad hoc basis, resulting 
in a tangled non-maintainable mess, commonly referred to as 
spaghetti.  
… 
EAI is not just about sharing data between applications. EAI focuses 
on sharing both business data and business process. 

Many different integration approaches have been developed and tested, 
achieving great or small success, but none of them has been generally accepted. 
One of the objectives of this book is to clarify the role of the modelling approach in 
achieving satisfactory model integration and therewith also better integration of the 
respective modellees. More details are discussed in the following chapters. 
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3 Conventional Product and Process Modelling 

Conventional Product and Process Modelling 

In all science, error precedes the truth, and it is 
better it should go first than last. 

Hugh Walpole 

Although many of the findings and considerations in this chapter could be 
generally valid for any kind of computer-based modelling, they are based mainly 
on observations of and experience with computer-based modelling in the field of 
mechanical engineering and mechatronics (MEM-modelling). 

3.1 Problems of Contemporary Modelling 

Understanding the problem is more important 
than finding a solution, since the exact 
representation of the problem automatically 
leads to the proper solution. 

Albert Einstein21 

As with any other area of science and research, contemporary modelling has its 
problems and weak points. This section presents an analysis and discussion of 
some important problems in contemporary modelling, in an attempt to extend or 
improve their understanding, as well as to propose some improvements. It starts 
with some more general observations, thereafter some of the more specific issues 
are discussed as well. 

                                                 
21 “Das Problem kennen ist wichtiger, als die Lösung zu finden, denn die genaue 

Darstellung des Problems führt automatisch zur richtigen Lösung.” (attributed to Albert 
Einstein by Adrian Krahn in “Vom Prozessmonitoring zum Prozessmanagement”). 
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3.1.1 General Observations 

I keep six honest serving-men 
(They taught me all I knew); 
Their names are What and Why and When 
And How and Where and Who. 

Rudyard Kipling 
The Elephant's Child, 1902 

Let us start with enumeration of some important facts and observations, evaluating 
their influence on the modelling domain, and then attempt to find their causes and 
consider how their negative influence could be avoided or relieved. Many of the 
phenomena that cluster together are so interdependent that it is not trivial to choose 
the (right) sequence for reviewing the elements of such a grouping. For this reason, 
as the discussion progresses and new information is presented, some of the points 
will be addressed again and again. 

3.1.1.1 The Most Popular Modelling Approach 
During the last twenty years, despite numerous alternatives, the use of software 
models on a computer has gradually become the most popular modelling approach. 
Why is this approach gaining more and more success and acceptance, despite the 
fact that it is the youngest and that at the beginning of the computer era both 
computers and software were much more expensive than nowadays? Indeed, this 
phenomenon is observable in almost all branches of science, industry and social 
life. However, the explanation should be sought in the character of modelling 
itself, rather than in the specificity of any particular area.  

An estimation of how suitable the model medium (or model nature, cf. Figure 
2.26) tends to be for fulfilling general modelling purposes is given in Table 3.1, 
where the following assumptions are made: 

• The nature of the model medium can vary for the same modellee. 
• All estimations consider theoretical possibilities rather than 

implementation-dependent values. 
The averaged results presented in the table are estimated on the basis of 

considering a number of different modellees from different domains.  
As we can see from this table, the use of computer models always leads to the 

best fulfilment of common purposes of the modelling. But is the price acceptable 
and do we always get only advantages, compared to other natures of model 
medium? Some other (mainly economic) considerations are given in Table 3.2. 

In Table 3.1, Table 3.2 and Table 3.3 the given values are relative to other 
estimations, where the following notation is used: 

• the maximum of the respective attribute for all media is denoted max; 
• the minimum is denoted min; 
• absence of an attribute is denoted “-”; 
• more than one alternatives are separated with “/”; 
• a partial presence of an attribute is denoted “~”; 
• more “+” symbols mean a stronger relation or better representation of the 

respective attribute. 
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Table 3.1. Fulfilling the general modelling purposes depending on the model medium 

 Nature/medium
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Supporting and improving the 
understanding of the matter 

++ ++ + ++ +++ 

Supporting communication + + - ++ +++ 

Providing a common basis for discussions 
and information exchange  

yes yes no yes yes 

Allowing comparison of different 
solutions 

+ + ~ +++ +++ 

Allowing analysis and prediction of 
characteristics 

+ + -/+ +++ +++ 

Allowing analysis and prediction of 
behaviour 

+ + -/+ +++ +++ 

 

Table 3.2. Estimation of modelling properties depending on the model medium (a low value 
is more advantageous!) 

Nature/medium 
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Modelling price   min  max 

Time needed for modelling   min   

Model price   min   

Price of model exploitation   min   

Price of duplication max  n.a. * min 

Time needed for duplication max ** n.a. * min 

Price for model transportation max ** n.a. * min 

Price of the host of the model n.a. n.a. n.a. n.a. max 

 
And finally, we shall consider not only the qualities of the modelling, but also 

the qualities of the results, i.e. of the resulting models. In Table 3.3, only qualities 
that are modellee-independent and applicable to any nature of model medium are 
listed. 
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Table 3.3. Estimation of different model properties depending on the model medium 

Nature/medium 
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Reusability + ++ - +++ max 

Autonomy n.a. n.a. n.a. n.a. max 

Changeability + ++ max +++ +++ 

Complexity   ? +++ max 

Dynamics min  max   

Durability max  min max*  

Extendibility min ++ max +++ +++ 

Flexibility min  max   

Homogeneity   max   

Intelligence n.a. n.a. n.a. n.a. max 

Independence max max    

Openness and modifiability min + max +++ +++ 

Reliability      

Robustness      

Scalability     yes 

Universality min + max ++ +++ 

Updateability min + max ++ +++ 

Remote usability n.a. n.a. n.a. n.a. yes 

 

3.1.1.2 Dependency on the Achievements of the Information Technology 
Computer modelling has its disadvantages, too. Most of them stem from the fact 
that any computer model is a heterogeneous system of hardware, programs 
(software) and data. Thus, computer modelling depends on the achievements of at 
least three different branches of science and technology: hardware engineering, 
software engineering and computer science (a.k.a. informatics). 

Brooks Jr. (1987) classified the difficulties of software technology in two 
categories: “…essence, the difficulties inherent in the nature of software, and 
accidents, those difficulties that today attend its production but are not inherent.”. 
Also there has been mentioned: “as we look to the horizon of a decade hence, we 
see no silver bullet.” Now, almost two decades later, we can say that this forecast 
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has become true: although many novel methods, tools and improvements were 
introduced in software engineering, none of them was a panacea (a universal and 
perfect solution) to the existing problems and difficulties. In particular, the 
accidental problems of software modelling are tightly bound nowadays to the three 
branches mentioned above – software engineering, hardware engineering and 
informatics. 

3.1.1.3 System Centricity of the Conventional (Approach to) Modelling 

At the beginning of the 21st century, the modelling of products and processes is 
still performed mostly by means of computer-aided systems, primarily for 
historical reasons. The trend began with the spread of formal programming 
languages (which corresponds approximately to the second stage in Figure 3.1) in 
the late 1950s and especially with the idea of writing each new routine in a way 
allowing for its reuse (cf. the third stage in Figure 3.1). Such parameterized 
routines were collected into libraries and each newly written program was able to 
simply call them and rely on their functionality. A higher number of routines in the 
library used to mean higher functionality, therefore there was a naive striving to 
make the libraries larger and to write reusable programs. With the growth of 
routine diversity in the libraries, one began to lose track of what was available, so a 
new trend emerged for reorganization of the routines and grouping them in 
purpose-oriented libraries. Then a new type of programs was due, that would allow 
use of as many of the library routines as possible with as little effort as possible. 
These new program types were initially called applications (or application 
software). The latter were also known under different domain- and purpose-
dependent names (e.g., word processor, spread-sheet, plotting program, etc.), but 
were actually the first computer aided software systems, known under the short 
name CAx-systems. 

With time, the use of CAx-systems as modelling tools became the dominant 
approach to development of complex models – at least in the field of mechanical 
and electronic engineering. We shall call this approach the system centred 
approach (SCA), or conventional approach to modelling. For about a decade or 
two (say, between 1975 and 1995) the CAx-systems seemed irreplaceable and 
untouchable aid in the engineering processes, and especially for engineering 
modelling. However, the continuously increasing number of types of CAx-systems 
(continuing even nowadays) started to produce software systems deviating from 
the “typical CAx-system”– i.e. distributed systems, intelligent systems, etc. A 
common characteristic of all CAx-systems, though, remains the permanently 
increasing number of suppliers that are involved in their production. This situation 
is relatively easy to explain: permanently increasing requirements lead to higher 
required functionality, which, in turn, means involvement of more and more 
domains. Consequently, teams developing a given CAx-system involve more and 
more experts, which – due to specialization – (have to) come from more and more 
different enterprises.  

It is highly probable that in the future the focus will be shifted from CAx-
systems, which are actually only tools helping us to build models, towards the 
models/results themselves, which are what we need. Thus, it is not impossible that 
the time of The System comprised of many autonomous intelligent models (cf. the 
last stage in Figure 3.1) will become reality. Until then, the SCA remains a 
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dominating approach, as it has many undisputable advantages. But since it has 
some peculiarities, too, at least the most important of them will be discussed in 
dedicated sections below. 
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Figure 3.1. Some more important achievements in the CAE-history, after Avgoustinov and 
Bley (2006) 

3.1.1.4 Communication 

Recent globalization has led to increased competition in the market. In order to 
remain competitive, manufacturers can try to increase the quality, to decrease the 
manufacturing costs, to reduce the time-to-market, or to play with all of these 
factors. Specialization is a way to achieve better quality and possibly lower price, 
but it leads to inability to accomplish all tasks, so it should be combined with 
cooperation for influencing both price and quality. Cooperation, in turn, could lead 
to additional cost reduction (e.g. achieved by outsourcing), but leads to urgent need 
for global data access and communication in the form of data exchange and/or 
data sharing among the involved software systems. According to Sachers (2001), 
the former is characterized by a file-based, asynchronous data exchange between 
two partners, while the latter represents “a synchronous data access using a 
network. Data will be not replicated. There can be links between data objects 
across the network. For the user it should be transparent where the data are 
physically stored.” It is commonly agreed that both types of communication – i.e. 
data exchange and data sharing – are necessary, but depending on the application 
one of them could be more adequate. Since each cooperation partner is typically in 
a different location, uses a different platform and has different specialization and 
tasks, the resulting cooperation environment is heterogeneous and multicultural. It 
is hardly surprising, therefore that despite numerous standards for information 
exchange, communication among partners and integration of the respective 
(model) pieces often encounter problems.  
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3.1.1.5 Security 
Communication provides means for cooperation during the definition, design, 
planning, production, use and support of different products in/from different 
places. Yet, communication via public lines (and especially via Internet) raises 
many security issues. On the one hand each partner should be secured against 
intrusion and data theft, which is achieved through password protection and 
firewalls. On the other hand, the communication line has to be protected against 
tapping from third parties, which is accomplished by data encoding. For some 
manufacturers all this is insufficient, thus, the European Network eXchange (ENX) 
was founded in 1997 – a network with no direct link to public networks (to ensure 
security), devoted to cooperation among participants. With or without an ENX-like 
network, there is still a problem here, which comes from “inside”. In order to 
cooperate with each other the participants have to communicate, so they have some 
access to their partners' net or computer. But to allow every partner to cooperate 
without having to expose sensitive know-how to other collaborators, a mechanism 
for fine-grained access permissions is needed that is not always available. Ideally, 
access permissions can be defined differently for each level of any model and for 
each component within a level and can be based on account or user group, access 
time, user location, etc. From another point of view, many authors (or their 
enterprises) could be interested in access protection that allows the partners to use 
the respective object (model, product, etc.) but at the same time protects the 
author's know-how from theft or undesired revealing. 

3.1.1.6 Integration-related Issues 
The integration of both separately developed products and their (separately 
developed) models has remained for decades one of the burning issues of 
contemporary engineering. It has affected not only the sub-domains of 
mechatronics, but all branches of science, industry and public life. Despite 
immense investments in standardization (cf. Section 3.1.1.12) aiming at 
improvement of the integrability, the results are moderate. Due to the importance 
of integration related issues, they are discussed in a dedicated section (Section 
3.1.3) below. 

3.1.1.7 Enterprise-related Observations 

3.1.1.7.1 Specificities of Small and Medium-sized Enterprises (SMEs) 
According to Günterberg and Kayser (2004), 99.7% of all enterprises subject to 
VAT in Germany in year 2003 were SMEs. They employed 70.2% of all 
employees in private businesses and realized 41.2% of all turnovers subject to 
VAT. In 2003 the Commission of the European Union European Union (2003, 
ANNEX, Article 2) changed the definition for SMEs, with validity from the 
beginning of 2005, as follows: 

The category of micro, small and medium-sized enterprises (SMEs) is 
made up of enterprises which employ fewer than 250 persons and 
which have an annual turnover not exceeding EUR 50 million, and/or 
an annual balance sheet total not exceeding EUR 43 million. 

According to another evaluation of the statistical data about Germany in 2003, 
obeying the new definition of the EU, 99.6% of all enterprises were SMEs, they 
employed 55.5% of all employees and realized 40.9% of the turnover. 
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Since the distribution of SMEs in other countries of the European Union (and, 
in all probability, in most other industrial countries) is not very different, they 
deserve special attention in the analysis. 

The SMEs have some specificities. They usually possess knowledge in a 
relatively small area, but this knowledge is very detailed. They have restricted 
resources and irregular customers as well as often changing tasks. Consequently, 
they cannot accomplish every task alone and seek cooperation with other 
enterprises. The chances to find appropriate partner(s) in the neighbourhood are 
relatively low. In addition, a single partner is rarely sufficient. So, in most cases a 
SME has to cooperate with numerous and geographically dispersed partners. 

The mentioned specificities leave us with the impression that even minimal 
improvements of the following aspects would have an immense impact on the 
industry as a whole and are welcome: 

• Tools for optimal representation and exploitation of the available 
knowledge and expertise. 

• Possibility to use cheap, reusable components. 
• Maximal flexibility and reusability of the employed concepts, tools, 

components and other resources. 
• Tools supporting cooperation, in particular, tools supporting data exchange 

and/or integration with foreign models. 
• Reliable communications and net-based solutions. 

All these considerations are summarized in Table 3.4. In addition, it should be 
noted that since the end of the 20th century there has been an obvious trend to 
substitute expensive products or services with services on demand over the Internet 
under the pay-by-use scheme. 

Table 3.4. SME-related observations and their consequences 

Observations Consequences/requirements 

Have detailed knowledge in a relatively 
small area 

Tools for optimal representation and exploitation 
of this knowledge; 

Cannot accomplish everything alone Cooperation ⇒ data exchange or integration with 
foreign models; 

Have restricted resources Cheap, reusable components; 
Leasing or pay-by-use instead of purchase; 
Outsourcing; 

Often changing customers and tasks Maximal flexibility and reusability; 

Have numerous and geographically 
dispersed partners 

Reliable communications and net-based 
solutions. 

3.1.1.7.2 Enterprise Uniqueness 
There are at least two cases of enterprise-specific modelling, namely, modelling of 
products manufactured in the respective enterprise and modelling of the relevant 
processes. The former case is meaningful mainly if the modelled product is unique 
and produced nowhere else. But even then its importance is much lower than that 
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of the latter case. The reason is that processes are modelled in order to be 
optimized, and they either include products or influence them. Furthermore, to 
model an enterprise-specific process often means to model the enterprise itself. 
Since two enterprises are never the same, their (digital) models will always be 
different. This means that models of enterprises have almost no chance to be 
reusable, which makes the modelling rather expensive. On the other hand, it is 
much more often the case that certain parts (components) of enterprises happen to 
be the same or at least similar. So, the components of an enterprise model can be 
developed as parameterized and reusable components. Nevertheless, current 
modelling approaches do not offer a satisfactory solution for the creation of 
components of process models which could be reused without exposing enterprise-
specific know-how or secrets. 

3.1.1.7.3 Influence of the Globalization 
Last but not least, let us recall that the globalization poses specific requirements 
and raises important issues. Among them are the severe competition in price, 
quality and delivery speed; the cooperation among partners in different countries 
and time zones; the need to integrate parts or components created by a multi-
cultural society into functional and reliable products, as well as the ability to 
organize the production, distribution and maintenance of products in huge number 
of variants and for a large number of highly diverse conditions of use (climate, 
standards, erudition of the average user, etc.). 

3.1.1.8 Lifetime 
The lifetime of a model is one of its important traits. It seems to be branch-specific 
and product-specific and there is no common opinion on its minimal length. Yet, 
typical lifetime is between 3 and 5 years for hardware, about 8–10 years for system 
software, 15–20 years for applications and about 30 years for data/information. In 
particular, “25 years as recommended for the automotive industry” is mentioned in 
Kilb and Arnold (1998), and the desired minimal lifetime in the aerospace industry 
is longer – a frequently mentioned number is fifty years, and there is a trend for 
requiring even longer lifetime for data and its derivatives (information, knowledge, 
etc.). 

We face an obvious paradox here. On the one hand, a long model/data life is 
pursued. On the other hand, the models are dependent on the CAx-system 
(application). Apparently, the simpler the format of the data, the more rarely a need 
to change it arises and, respectively, the longer the life of the data represented in 
that format. A decisive factor for the lifespan of applications could be their 
popularity, and for data – the popularity of the format.  

For example, Burkett (1998) aims at “data usage architecture that starts with 
the assumption of data access and exchange over the Internet using existing 
Internet protocols and languages. This provides a general and ubiquitous platform 
that will be more stable and have a longer lifespan than point-specific solutions.” 
But the data exchange forms a separate group of issues. Yet more interesting and 
important is to consider the lifetime of processes and their models.  

Some generalized process types (e.g., forging) are as old as the manufacturing 
itself and are nevertheless (with respective modifications and improvements) still 
in use. It would be advantageous if models of any process can live at least as long 
as the process itself. The more general a given process is, the more general (and 
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simple) its model will be. So, the lifetime of a general process and its model is 
expected to be respectively longer than that of more specific processes and their 
models. 

3.1.1.9 Changeability and its Derivatives 
The desire for increased lifetime of most products as well as for increased lifetime 
of (the respective) production facilities poses new requirements on the 
manufacturing process, on its planning, organization and control. One of these 
requirements is the ability to adapt easily and quickly to new requirements.  

According to Wiendahl (2002), “The changeability of enterprises develops 
more and more to the key success factor, in particular because of new conditions 
in the surrounding field of production.”. In particular, Wiendahl distinguishes five 
levels of changeability, viewing them in two orthogonal dimensions – the product 
level and the production level (cf. Figure 3.2). On the lowest level, he introduces 
the change-over ability, which is relevant to the operation and to a workplace and 
is defined in Wiendahl and Heger (2003) and Wiendahl and Heger (2004) as “the 
technical ability of a single machine or workstation to perform particular 
operations … with minimal effort and delay”.  
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Figure 3.2. Changeability and its derivatives, after Wiendahl (2002) 

Again, at the second level we have the reconfigurability, which corresponds to 
a (product-) part and to a manufacturing cell and describes the ability to switch 
with minimal effort and delay to production with other characteristics.  

On the third level, the ability to make changes in an assembly group and, 
respectively, in a manufacturing area is referred to as flexibility. It is viewed as the 
easiness of switching the production to other – although similar – product (family).  

The ability to make changes in a product and, respectively, in a facility on the 
fourth level is referred to as transformability and indicates the ability of a whole 
facility (e.g., factory) to switch to the manufacturing of another product family.  
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Finally, on the fifth level, he uses the notion of agility to describe the strategic 
ability of an enterprise to open up new market(s) and undertake every necessary 
measure for adapting its product/service portfolio and its production network to it. 

All these types or derivatives of changeability hold to some extent for models 
and modelling, too. With software models, though, it makes sense to introduce one 
additional (lowest) level – the level of variables or, respectively, modelled 
attributes. I shall call the possibility to make changes on this lowest level simply 
changeability. The relations among the levels of modelling and the derivatives of 
changeability according to the idea of Wiendahl (cf. Wiendahl (2002, p. 126) are 
represented in Figure 3.3. 

Note that some elements of the model level appear on the boundary between 
two changeability levels, which means that depending on the case the one or the 
other changeability types could apply. This should not be viewed as a contradiction 
or exception, but – instead – as a confirmation that the software is, in general, more 
changeable/flexible than anything else. 
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Figure 3.3. Changeability and its derivatives for (software) models, based on the idea of 
Wiendahl (2002) 

Another fact to bare in mind is that in the area of software engineering and 
software modelling the term flexibility seems to be used as a generic replacement 
of all changeability derivatives. One of the reasons is that the term changeability is 
neutral – i.e., it can be used in both positive or negative sense, since – depending 
on the case – changeability can be desired or not desired22. Flexibility, on the other 
hand, is typically used to describe a desired trait and is usually related to 
                                                 
22 For instance, the changing (or changeability) of a read-only variable/model/document, 

etc., is usually not desired. 
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adaptability (cf. its definition in Section 2.4 above in the previous chapter). 
Another probable reason is that the term is somewhat related to the term software – 
via the word(part) soft – and probably sounds more familiar. 

Although I adhered to the original terms in Figure 3.3 (except for the lowest 
level, which is newly introduced), in the case of software models they are not 
always appropriate. The computer scientists use predominantly the term flexibility 
on different levels, although there seems to exist no common view on the 
changeability in respect of structure and hierarchy of sophisticated models/systems. 
This is reflected in the definition of flexibility from IEEE (1991): “the ease with 
which a system or component can be modified for use in applications or 
environments other than those for which it was specifically designed”. Therefore, 
instead of (re)defining or explaining all these terms for software, I would like just 
to note that the last three of them – flexibility, transformability and agility – 
actually describe the ease with which a modellee on a given level or its 
corresponding model can be adapted to new needs, requirements or purposes. 
Since this resembles the definition of IEEE fairly close, I prefer to refer to the 
whole group of terms as levels of flexibility or derivatives of flexibility. 

Please note that due to the attempt to keep general validity on many places in 
both Figure 3.2 and Figure 3.3, it is possible to use several alternative terms, but 
due to lack of space only one or two of them are given. For instance, the place of 
the network of systems of models could be taken from distributes system of models, 
instead of product model on the same level could stay model of a system (of 
objects) and so on. 

3.1.1.10 Mechatronics-specific Requirements/Issues 
Mechatronics is a typical example of an area where three major branches merge 
into one: mechanical engineering, electronics and software engineering. 
Consequently, the product models have minimum three layers – mechanical, 
electrical and software – but not every CAx-system offers support for all of them. 
Although the integration of components from these three layers is indispensable, it 
is often problematic due to irresolvable differences (format, representation, 
conventions, etc.) between the layers of the model or due to incompatibility of the 
systems used for modelling the different layers. Some of the problems and 
specificities of this area can be viewed as representative for other interdisciplinary 
fields and are of special interest to us. In particular, the problems related to the 
integration are discussed in a dedicated section. 

3.1.1.11 Complexity-related Issues 
Complexity is a factor that is omnipresent. It is neither needed nor not pursued, but 
nevertheless always present: we can encounter it in every subject domain, in every 
aspect and on every level of detail. Globalization leads to more competition, 
therefore more and more features and functionality are built into the products, 
more and more product variants (especially of compound products) and product 
ranges are introduced, and the process diversity increases, too. Therefore, 
complexity arises even where it has not been observed yet as well as increases 
where it has been present. 

Important consequences of the complexity can be grouped as having impact on 
development, quality, finances, psychology, maintenance, use and others. An 
attempt to represent them visually is given in Figure 3.4. 
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Figure 3.4. Some consequences of complexity 

Due to their huge influence on almost every modelling aspect, the complexity 
issues are discussed in a dedicated section below. 

3.1.1.12 Standardization and Standardization-related Issues 

3.1.1.12.1 Definitions 

3.1.1.12.1.1 Standardization 
The standardization process aims to achieve at least the following improvements: 
18. Better interchangeability of products, software, processes, documents, etc. 

19. Better quality, reliability and acceptability of products, processes, services and 
other goods. 

20. Better predictability: if something is said to comply with a certain standard, 
those who know the respective standard can better tell what is to be expected 
from it.  

Yet, there are some contradictory issues related to standards and 
standardization. The point is that in order to be efficient and to reach its goals, a 
standard has to be respected and followed by as many users as possible. In this 
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sense, the so-called de facto standards or industry standards have a slight lead over 
the standards designed from scratch. Probably this is one of the explanations of 
John Sowa's Law of Standards, given in Sowa (2004): 

Whenever a major organization develops a new system as an official 
standard for X, the primary result is the widespread adoption of some 
simpler system as a de facto standard for X. 

On the other hand, the needs and requirements of different (potential) users of a 
standard are usually so different that it is hardly possible to find even two of them 
that would be equivalent. In order to analyse this situation, suppose we are given a 
number of enterprises working in the same subject area. Let us consider how we 
could make them use a given standard in order to achieve the above-mentioned 
aims.  

Assume that a standard is defined through a set of characteristics Sstd and that 
each of the N enterprises would have a certain set of characteristics CE that it 
desires to have in the standard. Thus we have N sets of characteristics and we want 
to combine them in a way leading to optimal results. From the point of view of 
combinatorics there exist three possibilities of how to choose the set which defines 
the needed standard: 

i) take the union of all N sets uSstd: 

U
N

í
Estdu i

CS
1=

=  (3.1) 

j) take the intersection of all N sets iSstd: 

I
N

i
Estdi i

CS
1=

=  (3.2) 

k) take superset of case 0 which is subset of i) iSstd ⊂ mSstd ⊂ uSstd; 
l) appoint a committee, which analyses the subject area, consider the elements 

of set i), throw away unneeded, controversial or problematic elements and 
insert additional elements, if considered necessary. 

 
Case i) would lead to maximal theoretical interchangeability, but also to 

maximal complexity (cf. Section 3.1.2 above) and, respectively, to maximal effort 
for the development of the standard and its support. 

Case j) can lead – depending on the specific situation – to an empty set or to a 
set which is too small to be able to define a useful standard.  

Case k) seems to be better as a compromise between the first two cases, but it 
leads to the problem how to decide which elements of which set are to be taken 
over and which elements are to be ignored. Some possibilities are discussed below. 

And, finally case l) has much in common with case k), but reveals in addition 
problems of different nature, namely, how to choose the members of the 
committee, so that all enterprises get balanced representation and their interests can 
be fairly pursued. 

3.1.1.12.1.2 Implementation 
Fast implementation of any standard is crucial for its success. Long 
(implementation) delays can shake the trust in it or cause temporary solutions oust 
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it for many of its potential users. But the more complex a given standard is, the 
longer takes its adoption and, respectively, implementation. This seems to be the 
case with, e.g., ISO 10303 (well-known as STEP). 

3.1.1.12.1.3 Interface 
Each standard ages and at some point in time, a need to extend or update it arises. 
If this need arises gradually and not simultaneously at all concerned enterprises, 
some of the affected developers or users of the standard attempt to introduce 
extensions in their implementation of the standard. Thus, different extended 
implementations begin to lose their conformity (see the respective section below). 
Moreover, with each extension from a different implementer, the standard loses its 
role and strength. One of the consequences is that the interfaces to and from such a 
standard become inefficient or even non-operational. 

3.1.1.12.2 Standard-related Traits 
In this section we shall try to define some traits that allow us to assess and compare 
different implementations of a given standard. In order to provide a better basis for 
comparison, it is preferable for us to define and use traits that can be measured 
over the same range – ideally the range [0,1]. Such values can also be interpreted 
as percentages. 

3.1.1.12.2.1 Conformity of a Standard's Implementation 
Let there be a standard defined through a certain set of characteristics Sstd and an 
implementation of the standard, defined through the set of characteristics Simpl 
which is a union of the set of implemented elements of the standard SsdtElements and 
the set of implementation-specific elements Sspec. As a general trait allowing us to 
judge how standard-conforming a given implementation is, we can now use the 
ratio of the number of implemented elements of the standard and the number of all 
elements in the standard: 

std

sstdElement
conf S

S
S =  (3.3) 

Here Sconf is the standard conformity, which has a range [0,1]. 

3.1.1.12.2.2 Specificity of a Standard's Implementation 
This trait is not just the inverse value of standard conformity, but also a measure of 
uniqueness. Therefore, it is proportional to the number of implemented extra 
characteristics (extensions of the standard) and to the number of unimplemented 
characteristics, but is inversely proportional to the number of implemented 
characteristics. 

⎟
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3.1.1.12.2.3 Interfaceability of a Standard 
It could be interesting to estimate how difficult it is to interface two different 
implementations of the same standard, i.e. to establish a way of exchange between 



www.manaraa.com

92 3 Conventional Product and Process Modelling 

    

them. This trait, being specific to each set of a given standard and any two of its 
implementations, will be called interfaceability and will be denoted 
I(standard,source,target). It is proportional to the standard conformities and 
inversely proportional to the specificities of the both implementations: 

( )11
T)S,(std, ,,, −−= TSTS SpSpSCSCfI  (3.5) 

3.1.1.12.2.4 Standard-related Complexity 
No two standards have equal complexity – each standard is specific and has its 
peculiarities. Yet, efforts to reduce their complexity are observed. The introduction 
of application protocols in STEP, for instance, aims at reducing the complexity by 
restricting the scope of each protocol and thus making its implementation easier, 
inasmuch as several granules of smaller size are to be considered instead of a huge 
one. 

3.1.1.12.2.5 Effort for Exchange/Porting 
The standards for data exchange are being designed and developed to facilitate the 
exchange and make it more efficient. With increased standardization effort, 
though, the total effort for exchange and standardization may become bigger than 
the effort for exchange without standard. Based on the author's observations, in 
Figure 3.5 a hypothesis is presented about the total effort with regard to different 
standardization grades. According to this hypothesis the minimal total effort for 
exchange is expected to be somewhere between conventions and meta-norms. The 
exact position depends on the specific case, scope as well as other factors. 

 

Figure 3.5. Effort for exchange/porting depending on standardization grade 
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3.1.1.12.3 Compatibility and Data Exchange 
The development of a good standard takes time – everything should be carefully 
contemplated, verified, validated, etc. This time can be so long that the 
requirements can change or even a need for a totally new standard could arise. A 
typical example here is ISO 10303, whose first version development time took 
more than a decade, and even before it was complete, the work on the second 
version started. Despite great achievements of ISO 10303, the main problem 
nowadays is still the incompatibility of the data formats of different CAx-systems. 
On the one hand, it is attempted to overcome the incompatibilities by development 
and use of standards for data representation and exchange. On the other hand, in 
order to integrate models created in different systems, an exchange between the 
systems still has to be performed. An exchange using a standard format would just 
save the converter (cf. Figure 3.6) but not the exchange itself. This means that the 
mentioned architecture would still have problems with the huge size of the models. 

Integrated models "live" in system B

Model A
in format A

ConverterCAx system A CAx system B

Model BModel A
in format B

 
Figure 3.6. Integration of models by means of data exchange 

Note the paradox: STEP’s objective is “to provide a (system-independent, or 
neutral) mechanism that is capable of describing product data throughout the 
lifecycle of a product, independent from any particular system”, but no CAx-
system producer is even thinking about changing the native format of its CAx-
system to STEP, let alone doing it! This means that either the so-called STEP pre-
processors and postprocessors or the PDM-enablers (or both) have to exist for each 
CAx-system type. 

Another point, which is often disregarded, is discussed in Avgoustinov (1997). 
It is never the case that all data in a production chain has to be available (and 
respectively – converted) to all CAx-systems of the chain. Moreover, due to the 
specifics of the information flow it might be more efficient to have distinct 
standards for the exchange (cf. Figure 3.7) within each phase and perhaps a few 
standards for inter-phase exchange, rather than having one standard to cover the 
whole development and production chain. 

Any standard acts as an accelerator up to a given moment in the development, 
but after some (the same or other) point in the time it acts conservatively and slows 
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down the development unnecessary, especially by wrong subject or extent. In 
many cases a set of carefully chosen conventions can suffice and be much more 
flexible than a standard. On pp.166–167 of Booch et al. (1999), for instance, it is 
suggested that “A well structured interface is simple yet complete, providing all the 
operations necessary yet sufficient to specify a single service;…” (parts of the 
citation italicized by the current author). And the increasing popularity and success 
of industry standards like CORBA23 (cf. OMG (1998)), DCOM+24 and 
Enterprise Java Beans™25 confirms again the flexibility and the acceptance of 
these alternatives to a “global standardization”. 

Inter-phase
(main)

information flow

PDM

Design phase

Feedback

Product Delivery

Process planning
phase

Manufacturing
phase

Quality control 
phase

Customer's Request

Legend:
CAD  =Computer Aided Design
CAPP=Computer Aided Process Planning
CAM  =Computer Aided Manufacturing 
CAQ  =Computer Aided Quality control 
PDM  =Product Data Management
EDM  =Engineering Data Management
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PDM
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EDM
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Intraphase (auxiliary) Information Flow

 

Figure 3.7. Standardization of the information exchange within a production chain: dividing 
in several sub-domains, after Avgoustinov (1997) 

3.1.1.13 Other Problems 
There are problems related to security, complexity, diversification, heterogeneity, 
usability and overall value. Many of them are consequences of globalization, 
which intensifies the competition by increasing the pressure of costs, the pressure 
of time, the need for cooperative work and, therefore, the need for communication. 
Moreover, globalization exposes some specific problems like norm and regulation 
diversity among the partners, clash of cultures, as well as some special 
requirements. Also not to be ignored is the group of psychological problems: using 
                                                 
23 Abbreviated from Common Object Request Broker Architecture. 
24 Abbreviated from Distributed Common Object Model. It is Microsoft’s architecture for 

working with distributed objects. 
25 The name of the architecture for working with distributed objects from Sun 

Microsystems, Inc. 
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software can be fun, but when the software is unexciting, complex, buggy and 
lacks ergonomics, its use can be boring. We should not forget that many new 
technologies, products or ideas fail to become popular due to secondary factors like 
lack of attractiveness, (critically) high accidental complexity or bad advertisement 
and popularization. Quite to the point, Brooks Jr. (1987) spoke about the role of 
exciting technologies and their “great designers”. Considering, on the one hand, the 
high number of industry standards created by a couple of people but having great 
success, and on the other hand, the large number of unsuccessful standards created 
artificially by committees, he argues that “we should better learn to grow great 
designers” than to develop “great” standards and tools (quotation complemented 
by the author). 

3.1.2 Complexity-related Issues 

The challenge over the next 20 years will not be 
speed or cost or performance; it will be a 
question of complexity. 

Bill Raduchel, ~1999 
(Chief Strategy Officer, Sun Microsystems) 

Our enemy is complexity, and it’s our goal to 
kill it. 

Jan Baan, ~1999 
(SAP competitor) 

Simplicity is the ultimate sophistication. 

Leonardo da Vinci, 1452 – 1519 

The fact that complexity and complexity-related problems have been in the focus 
of many investigations from ancient times until today illustrates the importance of 
this topic. There exist different views on complexity, methods to oppose it and 
even sayings about it. One aphorism says that most genius-made things are simple, 
although not all simple things are works of a genius. 

According to Brooks Jr. (1987) “…from the complexity comes the difficulty of 
communication among team members, which leads to product flaws, cost overruns, 
schedule delays… less understanding … unreliability”. As complexity leads to 
many other problems and inconveniences (cf. Figure 3.4 above), it is very 
important to try to analyse the influence of complexity on the modelling and 
develop methods to measure and reduce complexity. But what is complexity? 

3.1.2.1 Towards a Definition 
Although a common word such as complexity should be intuitive enough, a brief 
look in the relevant literature shows a wide spectrum of interpretations of this term, 
varying from “the opposite of simplicity” to long and domain-dependent 
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definitions. Furthermore, complexity is discussed in different context by different 
authors: e.g., in Fagade et al. (1998) we find “total product (or project) 
complexity”, “management complexity”, “design and manufacturing complexities” 
and “process complexity”; or in Edmonds (1999b), offering a study of the 
complexity definition by various authors, it speaks of “true complexity”, “real 
complexity”, “system complexity”, “observer complexity”, “computational 
complexity”, “Kolmogorov complexity”, “descriptive complexity”, “complexity 
per se”; Grünwald and Vitányi (2003) use, in addition, “descriptional 
complexity”26, “object's complexity”, “algorithmic complexity” and “stochastic 
complexity”; finally, we could supplement all these with essential and accidental 
complexity after Brooks Jr. (1987) (cf. previous paragraph and Section 3.1.1.2 
above). To summarize, there is no unified view on complexity: scientists could be 
distributed into at least three groups according to their understanding of 
complexity. 

The views of one group (mainly IT-experts) would be, probably, best illustrated 
with the definition, given in Black (2005): “The intrinsic minimum amount of 
resources, for instance, memory, time, messages, etc., needed to solve a problem or 
execute an algorithm.” This definition is not tangible enough to use as a base for 
(more) quantitative assessments. And since it measures the complexity of a 
problem only indirectly, one could get the impression that the complexity depends 
on the tool used for its solution, which is unacceptable. Another definition of 
complexity in the same sense, but explicitly bound to the (context of) algorithms is 
given in Howe (2006): “The level in difficulty in solving mathematically posed 
problems as measured by the time, number of steps or arithmetic operations, or 
memory space required (called time complexity, computational complexity, and 
space complexity, respectively).” As we can see, both definitions mainly refer to 
computational complexity, which constitutes only one part of the complexity of a 
software model. 

Another widespread interpretation is that complexity can be viewed as a 
measure of the difficulty to understand a given matter or to deal with it. The lack 
of understanding alone is not always a problem, but it becomes important as soon 
as a decision based on the respective matter has to be taken. Since understanding 
can hardly be quantified and, in addition, depends on other factors (cf. Figure 
3.14), such a definition is of little use. 

A better alternative is proposed by another group, represented, e.g. by Suh (cf. 
Suh (2001), chapter 9). According to this definition, complexity and information 
are tightly related and: 

Definition 3.1: Complexity is a measure of uncertainty in achieving 
the desired functional requirements. 

This definition allows us to measure complexity directly in bits, which is very 
convenient and puts the stress once again on the relation to information. Thus, it is 
applicable not only to software systems, but to any other system with a countable 
number of components. However, it is measured or defined as “only relative to 
what we are trying to achieve and/or want to know” (cf. Suh (2001, p. 472), 
meaning that until the functional requirements are known the complexity either 

                                                 
26 Cited as used in the source; not to be confused with “descriptive complexity”! 
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does not exist, which is obviously false, or we cannot measure it, which is rather 
inappropriate. Yet, complexity according to Definition 3.1 refers only to a part of 
the whole complexity phenomenon and should probably be better called 
“complexity of achieving the aims”. 

Even the simplest technical system or the simplest object can be “finite” only at 
a certain level of observation or abstraction. For instance, we are not able to count 
the atoms in the smallest mechanical part or in the smallest piece of matter. 
Physicists have not succeeded until now to fully explain the structure of the atom 
itself. It is (still) impossible to repudiate certain “fractality” of the matter – cf. the 
Bohr model, explained in Wiki (2006) as a planetary model in which the electrons 
orbit a tiny nucleus in the way that the planets orbit the sun. Indeed, neither in the 
direction of the macrocosm nor in the direction of the microcosm an End comes 
into sight, meaning that – as for now – we can hardly dream of final (or countable) 
systems. Consequently, the real complexity of anything tends towards infinity, or at 
least is immeasurable. So, Edmonds (1999b) states: “The “true complexity” of real 
objects (if it existed) would probably be totally beyond us”.  

Nevertheless, in our everyday life we perceive certain things as more complex 
than others, or some aspects of the same thing as more complex than others – e.g., 
the use of any product is normally much easier than its development or production. 
Moreover, we can deal (although not in all cases) with this “infinite complexity”. 
What helps us is our ability to abstract away from the inessential details and deal 
with the essentials only. For this reason I shall introduce a new term here: 

Definition 3.2: the perceivable or ascertainable part of the absolute (or 
full, or total, or overall) complexity of an entity will be 
called discernible complexity of this entity. 

The term entity is used as a generic term (or placeholder) because it is more 
general than model, product, process, etc. The entity could also be a task – e.g., to 
prepare a model or to produce certain product. Therefore, all references made to an 
entity within this section could be applied as well to any problem, task, model, 
product, process or other complex object. 

As already mentioned above, many different complexity types are discussed in 
the literature, but no attempt of their systematization or their ordering in a 
taxonomy has been available until now – cf. also Weber (2005c). In my view, 
when speaking about one and the same entity, there are no different types of 
complexity, but different views or aspects on it. 

Definition 3.3: any part of the discernible complexity of a given entity, 
which is important or essential, mainly in connection 
with something specific or from a specific viewpoint 
(aspect) will be called aspect complexity. 

Development, use, testing, marketing, etc. are examples of different aspects. 
Each aspect appears to be related to (specific) activities, and activities are often 
specific to a given phase within the lifecycle. The overall discernible complexity, 
which is relevant for a given problem or entity, can thus be viewed as greater than 
or equal to the sum of the complexities of all its aspects. In addition to the 
discipline-specific aspects there could exist general or product-specific aspects, 
too.  
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In interdisciplinary branches of science like mechatronics, one or more of the 
general aspects may exist in more than one of the involved disciplines, which 
additionally increases the complexity. In this text, “discipline” is used as a more 
general term than “domain”. To avoid possible confusion, all (or most) discipline-
specific parts of such interdisciplinary models are separated in their own layer (cf. 
the definition of layer in chapter “Modelling basics”).  

We could think of aspects and disciplines as of two dimensions forming the 
complexity space27 of a given entity, as illustrated in Figure 3.8. In fact, there is one 
more relevant dimension of complexity that is not considered here, namely, 
structure (to be discussed in Section 3.1.2.2.3 below), but it is difficult to prepare 
an adequate representation on (two-dimensional) paper. 

 
Figure 3.8. Complexity of an interdisciplinary model: layers and aspects 

Until now, the causes of complexity and the factors influencing it have been 
investigated unexpectedly little. So, let us start with some observations. 

3.1.2.2 Observations 
When we use the word “complexity” alone we actually (unconsciously?) mean 
“discernible complexity”. The absolute complexity of software models is always 
finite (after all, they are created on computers having final memory and saved on a 
medium within finite place), but often it is higher than we can perceive, feel 
comfortable with or would like to have. 

The brain cannot perceive information having (discernible) complexity above 
certain critical level. This critical level is person-dependent, i.e. the discernible 
complexity is subjective. In particular, it depends on the person's a priori 
knowledge (depending in turn on education and background), on the power of 
comprehension, and perhaps – at least to some degree – on the training. An 
illustration of the different perception of two persons, experts in the same 
competence domain, is given in Figure 3.9. 
                                                 
27 Not to be confused with the term space complexity, used in computer science to refer to 

the amount of memory space that a computer program requires for its proper execution. 
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Figure 3.9. Individual limits by perception of complex matter 

In order to understand why the critical level of complexity is essential, suppose 
that we are observing (only) one person, having to solve a problem or a task in the 
considered competence domain – say, to develop a product for us. We call this 
person (at least for this example) Solver; and we – as a customer – are permanently 
increasing the number of our requirements for the negotiated product. 

As expected, with the increased number of requirements the complexity of the 
problem increases, too. At the beginning the problem is simple (its complexity is 
negligible), and the problem is solved in the best possible way. With increasing 
complexity, we reach a point when our Solver starts to produce sub-optimal 
solutions (or products). This means that he either cannot find an optimal solution, 
or finds multiple solutions but cannot decide which is the optimal one. If we 
continue to pose new requirements (and thus further increase the complexity), a 
moment will come when the complexity is so high that the Solver cannot control it 
anymore, and either delivers a wrong solution or cannot deliver a solution at all. 
This stage corresponds to the critical complexity level.  

The ability to make (appropriate) decisions as a function of the complexity is 
graphically represented in Figure 3.10.  

The critical complexity level marks the boundary between solvable and 
unsolvable problems, or between ability and inability of making a decision. So it 
makes sense to terminologically distinguish whether the complexity is below or 
above this level. Since the ability to take decisions is typically related to the ability 
to control a given situation, we shall use the terms controllable and uncontrollable 
for complexities below and above the critical level, respectively. 

In general, a typical sign that the critical level is reached is the fact that the 
person in question either ceases to perceive (the excess of) information or cannot 
start to perceive it at all. The latter case happens typically when the information 
comes from a foreign domain about which very little a priori knowledge is 
available. The additional uncertainty, resulting from the lack of knowledge and 
understanding that are needed to solve a given problem, is called imaginary 
complexity in Suh (2001, p.476).  

The imaginary complexity is usually higher when multiple aspects of the 
modellee have to be considered. If the discernible complexity of the main aspect of 
the modellee is already near to the critical complexity level of the Solver, this 
means that every new aspect that has to be considered increases the risk of 

Competence domain

Task or
problem 
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reaching a situation without (optimal) solution. How to deal with this challenge? If 
we assume that the critical complexity can be expressed as the number of facts that 
are (still) comprehensible at the same moment, one possibility to reduce or keep 
the complexity below the critical level is visualized in Figure 3.11. 

Complexity
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100%

Ability to 
make decisions

Critical
complexity level

Critical (in)ability
to make decisions

Complexity
0%

100%

Ability to 
make decisions

Critical
complexity level

Critical (in)ability
to make decisions

 
Figure 3.10. Dependence of decision making on complexity 

The complexity of a process and its results are not necessarily mutually 
dependent. Often simple procedures (codes, programs), both in nature and 
computing, yield most complex results, and vice versa – complex procedures 
return simple results. Similar observation can be made about the interdependence 
of the complexity of a problem and its solution. Therefore, a reasonable question is 
what exactly generates and influences the complexity of a model. 

Competence domain

Main task  

1

Subtask2

Competence domain

Main task  

Subtask

2

Main task  

Subtask1

Subtask2

 

Figure 3.11. Focusing by splitting/reducing the scope to keep the complexity controllable 
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3.1.2.2.1 Factors Influencing Complexity 
This section is an attempt to show at least some of the factors directly influencing 
the complexity (of any model). 

Edmonds (1999a) enumerates thirteen “Unsatisfactory Accounts of 
Complexity” (pp. 57–67). Many of them are, in my view, either just symptoms of 
existing complexity (e.g., “irreducibility” or “ability to surprise”) or consequences 
thereof (e.g., “improbability”, “processing time”, “ignorance”).  

The discernible complexity of an entity (modellee, model, etc.) depends on the 
competence domain of the respective viewer (cf. again Figure 3.9). The factors can 
be divided with regard to their dependence on the modelling domain into two large 
groups: domain-independent and domain-dependent factors.  

An example illustrating the distinction in perceiving the complexity based on a 
competence domain is the key difference between the creator and the user of the 
same entity. In general, each of them has different background and purpose, and 
perceives completely different complexity of the (same!) entity (cf. Table 3.5 
below). Here, it certainly makes sense to speak about role-dependent complexity. 

3.1.2.2.1.1 Domain-independent Factors 
The factor with the strongest impact on the complexity of a model (cf. also Figure 
3.14) is the discernible complexity of the modellee. In turn, it is a function of the 
number of (discernible) components in the modellee and of the number of 
(discernible) attributes (or features28) in each atomic component. So, let an attribute 
be defined as follows: 

Definition 3.4: a quality or property of an atomic entity (like model, 
modellee, component, etc.) that is distinguishable from 
the rest of the entity is called attribute. 

For instance, any line segment drawn on paper is atomic and has two 
discernible ends which, consequently, are (the main) attributes of the segment. A 
software model of the same line, though, is not atomic. It contains at least the 
mentioned attributes (the line ends) represented by means of a couple of variables 
or by means of models of other geometric elements – e.g., models of points. 

An attribute need not be visible in order to be discernible – e.g., a circle's centre 
can be invisible (or not visualized), but we know that it exists and it can always be 
determined if more than two points on the circle are known. Consequently, it is 
also discernible. 

Processes have attributes too. For instance, the moments of start and end of 
every process are well distinguishable in time and, therefore, are also attributes. 

Another example, illustrating the direct dependence of the discernible 
complexity on the number of (modelled) components and attributes, is a system of 
arbitrary number of points and line segments that can connect any pair of points. It 
is clear that by increasing the number of points the complexity of this system will 
also increase. This increase can be perceived also visually in Figure 3.12 (from left 
to right).  

                                                 
28 The word feature is probably a more adequate term for what I mean here, but it is too 

overloaded with other meanings and would lead to misunderstandings. For this reason I 
prefer to use the term attribute instead. 
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Figure 3.12. Systems of points and connecting lines with increasing (from left to right) 
complexity 

Note that the complexity of a system depends on the number of components – 
or attributes (in the above case, points) – not linearly. This might be not 
discernable at first glance, but it becomes apparent if we consider that the second 
system in Figure 3.12 can have two more line segments – corresponding to both 
diagonals – while still having only the same four points. Besides, any of the four 
line segments shown in the figure may be omitted, as illustrated in Figure 3.13. 

                

Figure 3.13. Systems of 4 points and different combinations of connecting line segments  

Let us have a closer look at how the two rightmost systems in Figure 3.13 are 
composed. Two of the line segments have been crossed and create thus a new 
attribute or component – their crossing point – which additionally increases the 
complexity of the affected system. We could certainly pretend that this (virtual) 
point does not exist, exactly as we could pretend that the centre point of a circle 
does not exist, but this does not reduce the complexity. I shall call such 
unpredictable complexity a derived complexity. It is part of either the essential or 
the accidental complexity (or both), which are, in turn, parts of the discernible 
complexity. In general, in a system of points with some points being connected 
with lines, it is not trivial to predict whether any pair of lines will get crossed or 
not. On the contrary, given a system of more than 3 points where a) all points lie 
on the same plane, b) no three points lie on the same line and c) every two points 
are connected with lines, it is certain that there will be at least one pair of lines 
creating new point(s) by means of crossing.  

Suppose that the points represent notions (or concepts, or models, or whatever) 
and the connecting line segments represent the (possible) relations among these 
notions. It is clear that – desired or not – similar phenomena can lead to derived 
complexity, meaning that the overall complexity of the system also increases. 
Apparently, by such a detailed modelling, a more complex modellee would get a 
more complex model. And only rarely, we can reduce the complexity of a model 
by means of reducing the complexity of the modellee. 

The factor with the second-strongest impact on complexity is probably the 
purpose of the model. Although it influences the complexity only indirectly, the 
purpose of a model determines the requirements for it and the necessary level of 
(modelling) detail29 – i.e. what must be modelled and what could be neglected. If 

                                                 
29 Not to be confused with level of (visualization) detail, as it is used, e.g., in the Virtual 

Reality Modelling Language (VRML). The latter allows us to achieve better visualization 
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we model something in order to understand it, we do not need many details. If the 
purpose of the modelling is to optimize the modellee, more details are needed and 
have to be modelled, and the complexity of the resulting model grows. 

Let us consider the representation of a circle on different kinds of (computer) 
devices. From a mathematical point of view, any circle is defined as all points 
having the same distance – the radius – to a specific point – the centre. Now, the 
infinite number of points comprising any circle are to be represented in a time that 
is not only finite, but also acceptably short. Without use of compasses, this can 
only be achieved as a compromise with the representation accuracy. Therefore, at 
least two different circle models are typically used. The one is used for saving on a 
medium and is similar to that in Figure 2.34; being compact and unambiguous, it is 
used for internal representation. The other is used for visualization purposes or 
external representation on output devices and is normally derived (or automati-
cally generated) from the internal representation. For the visualization, any circle is 
typically modelled by a polygon, where the number of points can vary in certain 
limits and is by and large a variable parameter for achieving flexibility. More 
points mean more accuracy, but also more calculations. Less points mean less cal-
culations, but an inadequate choice of this number – e.g., less than 8 points – leads 
to visualization of other well-known geometrical figures as in Figure 3.12. Thus, a 
quantity reduction can lead to quality reduction or even to loss of information. 

Immediately bound to the requirements and to the level of detail is the number 
of modelled functions and properties of the modellee. The developer of a model 
could vary this number and choose what exactly to model (or implement) – but 
only to a limited extent in order to fulfil the purpose of the model. If we again 
consider the circle model in Figure 2.34, we note that no appearance properties 
(colour, line type, filling, centre marker, etc.) are modelled. The required memory 
and the complexity are kept low in this way. But the functionality, the accuracy 
and – to some extent – the adequacy of the model are reduced. 

In turn, the number of modelled properties determines the number of model 
variables and their type. We can assume with acceptable accuracy that each 
important attribute of the modellee will be represented in a software model by 
means of one variable, but this variable has to be of appropriate type. If we 
consider the model of a circle from the previous chapter (cf. Figure 2.34) again, we 
note that the radius is represented by a numeric (floating point) variable, while the 
name is represented by a text variable. The centre of the circle is represented by a 
variable of type point, which is actually a compound variable built up from two 
numeric variables encoding the two coordinates of the centre in a Descartes 
coordinate system. Compound properties are represented by compound variables, 
so that each attribute has a corresponding variable, while there could be variables, 
having no corresponding attribute and being used for internal purposes of the 
model only. Nevertheless, the (data) types of the variables have impact on the 
complexity too. An overview of different concepts and term, related to complexity, 
as well as their interrelations are presented in Figure 3.14. 

 
                                                                                                                 

speed by choosing the most appropriate level of modelling detail (out of several different 
levels), when it is not necessary to show the model in the full possible detail. Since this 
technique introduces redundancy (part of the information is repeated in each encoded 
level), it actually increases the model complexity. 
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Similar considerations can certainly be made with regard to the functions that 

have to be modelled. Simply any function (or activity, or behavioural element) has 
to be represented by a program, because a single (compound) variable is 
inadequate and insufficient to represent even the simplest function. 
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3.1.2.2.1.2 Domain-dependent Factors 
Another factor of influence is the implementation of the model, which is always 
domain-dependant. Since the developer is usually free to choose arbitrary 
implementation (he must only deliver the required functionality and features), a 
proper choice could play a significant role in reducing complexity. Actually, the 
implementation has almost no influence on the essential complexity but only on the 
accidental one (cf. Section 3.1.1.2 above). Thus, the choice of an implementation 
strategy has to be a well-considered compromise between options (of approach and 
tools) and their complexity. 

Let us consider some specificities of the software models and their 
implementation. An analysis of the software models and their origins reveals a 
domain-specific stratification of the model representation. The following levels can 
be recognized: 

m) Hardware  
n) Machine language, running (and depending) on m)  
o) (Macro) Assembler, extending n) 
p) High-level language, written in o) 
q) Application written in p) 
r) Application-based model living in q) 
What all these layers have in common is that all they are involved directly or 

indirectly in the representation of a software model. And no matter how complex 
the model is, it is represented on the lowest level through ones and zeros. As a rule, 
unnecessary complexity should not be tolerated on any level. If the layers q) and r) 
are more open or if the modelling takes place in layer p), it is possible to achieve 
the desired flexibility and robustness to a much higher grade.  

In the case of CAx-applications – and CAx-systems are applications too – the 
closest level would be q), followed by r). On the other levels it is possible either to 
see the source code or to debug, or both. On level q), however, this is impossible, 
and on level r) this is only partially possible, and to what extent it appears to be 
case dependant. Such closeness on the top of the hierarchy has strong impact on 
the flexibility and also on all data exchange or data integration issues. 

Let us consider again the lifetime of the elements of the information processing, 
presented in Section 3.1.1.8 above. Due to apparent correspondence to the levels 
m) to r), it is possible to view these elements as sub-domains of the software-
modelling domain. Since the models are to be viewed as data or data-derivatives in 
this hierarchy, it is clear that their representation depends on (the lifetime of) all 
lower levels. In this situation long lifetime of the model representation can be 
achieved only if there is succession from one generation to the next within any 
lower level. Such succession is often called backward compatibility. 

3.1.2.2.2 Components of Complexity 
At this stage it seems that the absolute (or full) complexity of anything consists of 
at least three components, or three kinds of complexity: 

s) Imaginary; may also be called spurious, because in many cases it can be 
reduced to zero by means of learning. 

t) Random: unpredictable fluctuations (of system parameters) increase the 
total uncertainty. 

u) Combinatorial: depends on a finite number of factors whose possible 
permutations also increase the total uncertainty; alternative name is 
computable, since usually it can be computed. 
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Each of these components increases the overall uncertainty in dealing with the 
respective matter. 

3.1.2.2.3 Distribution (Analysis) of Complexity 
In order to process an entity of critical complexity, one usually splits it, for 
simplification, into several sub-entities (i.e. applying the well-known “divide and 
conquer” principle). After the split, each of the created sub-entities has lower 
complexity and their sum equals the complexity of the initial entity. It is possible 
to repeat the same operation over and over agan, and thus to build hierarchies of 
entities. 

Suppose the complexity of the main entity on the top level is one (100%). If we 
split this entity into (two) sub-entities (SE1 and SE2 in Figure 3.15). The sub-
entities need not be equal in complexity, but it would be advantageous, as we shall 
see later. Yet, the sum of their complexities will remain equal to the overall 
complexity of the parent entity.  

SE = sub-entity 

Entity

SE1 SE2

SE1,2

SE1,2,1 SE1,2,2

SE2,1

SE1,2,3

SE2,2

SE2,2,1 SE2,2,2

SE1,1

SE1,1,1 SE1,1,2

L0

L1

L2

L3

 
Figure 3.15. Distribution of the complexity within a given hierarchy 

A level complexity is the sum of the complexities of all sub-entities within a 
given level and is equal to the initial complexity of the top entity (each level has 
yellow background in Figure 3.15 and an index on the left). Since lower levels 
have larger number of sub-entities, the average complexity there is also lower. The 
complexity on the lowest level (i.e. in each leaf of the tree) should be lower than 
the critical complexity for the person that should process the entity. Thus, the 
complexity of a sub-entity in a similar hierarchy will depend on its level within the 
hierarchy and on the “regularity” of the complexity distribution within each level. 
It is worth noting that in contrast to the trees of data structures, a hierarchy-tree of 
an entity or a model cannot have nodes with only one child. This results from the 
nature of the process – we are splitting entities for splitting their complexity, but 
nothing should get lost, therefore, a “split into one part” is no change. 



www.manaraa.com

3.1 Problems of Contemporary Modelling 107 

    

Hierarchies, where the complexity of the separate sub-entities within any level 
is approximately the same and the number of sub-levels in the branches of each 
node is equal, are well-balanced and easier to handle – cf. Figure 3.16. 

SE = sub-task    

SE = sub-entity  

Entity

SE1 SE2

SE1,2

SE1,2,1 SE1,2,2

SE2,1

SE2,1,1 SE2,1,2

SE2,2

SE2,2,1 SE2,2,2

SE1,1

SE1,1,1 SE1,1,2

L0

L1

L2

L3

 
Figure 3.16. Balanced distribution of the complexity within a given hierarchy 

For both cases illustrated in Figure 3.15 and Figure 3.16 we can write: 

4210 LLLL complexitycomplexitycomplexitycomplexity ===  (3.6) 

In addition, for well-balanced trees it is easier to calculate the (average) 
complexity of the leaf-nodes (those that have no sub-nodes ): it is simply 1/LN of 
the complexity of the root node, where LN is the number of leaf-nodes. When the 
entities are always split into two sub-entities, the tree becomes a binary-tree and 
has all specificities of the binary-trees. Thus, we can calculate the number of leaf-
nodes LN for a binary tree with L levels as: 

)1(2 −= LLN  (3.7) 

If we index the levels from the root down and start from zero as in Figure 3.16 
(note that levels are labelled with L0, L1, L2 and L3, but the indices are 0, 1, 2 and 
3, respectively), we can use the index i of any level for calculating the number of 
nodes Ni in it: 

i
iLN 2=  (3.8) 

Furthermore, it is possible to connect the number of levels L, the number of 
leaf-nodes LN, the average complexity of leaf nodes Cavg and the complexity of the 
root node C with the following formula: 

LNCC avg *=  (3.9) 

or, alternativelly 
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)1(2* −= L
avgCC  (3.10) 

The Equation 3.9 can also be used for estimation of the complexity of cases, 
where the structure is not a balanced tree, or even not tree-like at all. But generally 
it is useful to put C=1 (or 100%) and look at the graphical representation of the 
interdependency of Cavg and LN, given in Figure 3.17. 

As we can see on the graphic in Figure 3.17, dividing an entity into sub-entities 
leads to decrease of the average complexity, but the dependency is not linear. 
Initially, it is very efficient; after reaching a number 10 to 15, the fall of the curve 
decreases rapidly, and for more than 20 leaf-nodes the fall of the average 
component complexity is so slow that further fission is hardly worth the effort. 

0,6

0,4

0,2

0,8

0
10080604020

1

 
Figure 3.17. Dependence of the average complexity of the components on their number by 
keeping the overall complexity constant (100%) 

Thus, the distribution (splitting) of complexity among many sub-components 
leads to simplification of the (resulting) components. More simplicity leads to 
easier analysis, which, in turn, leads to better understanding and finally to better 
(modelling) results. 
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3.1.2.2.4 Decomposition as a Way for Problem Solving 
For the above-mentioned reasons the method of decomposition (or divide and 
conquer strategy) is very popular for problem and task solving. The process can be 
illustrated as in Figure 3.18 

A problem is decomposed into sub-problems until either there is a solution 
available for every sub-problem or a (sub-)solution can be found for a given sub-
problem. These two processes constitute the analysis phase of problem solving, but 
as can be seen in Figure 3.18, this is only halfway to a full solution. After a 
solution for each sub-problem is available, the sub-solutions have to be put 
together or integrated. Since this process – similarly to solving a puzzle– involves a 
great deal of combinations and matching the sub-solutions to one another, it is 
denoted in the figure as composing/combining. At the end of the process we have a 
solution – represented by the assembled puzzle-parts at the lower left corner in 
Figure 3.18. The circle around the puzzle-parts symbolizes their unity. Now, as this 
solution has to be validated or at least compared with the problem, we have again 
matching. In reality, a solution seldom matches the problem exactly, which is 
symbolized by the different contours of the respective graphical representations in 
Figure 3.18. Thus, the composition and solution-problem matching constitute the 
second phase of problem solving – the synthesis phase. The problem solving can 
be viewed as a cycle too: when the problem and its solution are too different, the 
difference can be seen as a new – usually smaller than the original – problem to be 
solved. 

 

Decomposition

Composing/combining

Synthesis

Analysis

Problem/task

Matching Matching

New
 (p

art
ial

)

so
lut

ion
s

Sub-problems

Sub-solutionsSolution
 

Figure 3.18. Amethod for problem solving based on decomposition in sub-solutions 

Another symbolism in Figure 3.18 is the size of the sub-solutions, making 
allusion to the granularity. Clearly, a coarse-grained solution would be put together 
faster but match the problem worse than a fine-grained solution. Yet, there are 
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other specificities of the synthesis which deal with complexity too, and are 
discussed in the following section. 

3.1.2.2.5 Composing (or Building up) Complexity 
The distribution of the complexity discussed in the previous section and the divide-
and-conquer strategy help us to resolve complex problems or tasks into smaller 
ones, and thus simplify the steps towards a complete solution or a result. But this 
(simplification) is just the one side of the coin. The other side is, of course, the 
reverse process of combining (already) existing models and entities into compound 
models, entities, etc. These kinds of activities, leading to more complexity of the 
resulting entities, are known as synthesis and are typical when (unit) construction 
sets are used. 

In Section 3.1.2.2.2 above we assumed that each entity splitting was ideal in the 
sense that the complexity was fully distributed among the new parts resulting from 
the division. However, when we try to combine or integrate entities (i.e. in a 
system), the situation can be slightly different, especially if the entities are 
designed not for each other but as universal components instead. Even if these 
entities are just two, they may need an additional entity for holding or putting them 
together. Let us give an example of a similar situation for comparison and 
illustration. A material object, e.g., a wood stick, can be easily broken in two 
pieces. If we want to reconstruct the initial stick from the pieces, we need some 
kind of glue as an additional entity. Depending on the material of the object, we 
may use a solder, a brace, a simple container or something else instead of the glue. 
In software systems, the area of a module that allows us to connect it to another 
module is called interface, and the role of the glue is played by interface modules. 

3.1.2.2.6 Aspects of Complexity 
As already mentioned (cf. Definition 3.3), the discernible complexity depends not 
only on the person, but also on the aspect (or context). We can distinguish as many 
complexity-related aspects as we need or desire, which is illustrated in Figure 3.19. 

It seems impossible, though, to quantify the overall (discernable) complexity 
without quantifying each related aspect first. On the other hand, it is apparent that 
the complexity of different aspects of the same entity may be different – some 
examples are given in Table 3.5. In the first column, example entities are listed; in 
the first row of columns 2, 3 and 4 – the aspects creation, production and use; and 
in the remaining cells – actions that are specific for the respective example and 
aspect. 

Exactly as mathematical operations on objects of different types are not always 
meaningful, comparing the complexity of two different objects without specifying 
the aspect or of two different aspects of the same object is not always meaningful. 
For this reason, the importance of the ability to assess and quantify different 
complexity aspects increases. Special attention deserve those aspects that are 
present in (almost) all types of models. 

The discussion of all aspects mentioned in Figure 3.19 goes well beyond the 
scope of this work, but let us at least try to order them in a simple structure, based 
on the phases of a model lifecycle. A feasible grouping is sketched in Figure 3.20 
with regard to which model lifecycle phase a particular aspect belongs to. Note that 
the relations between some pairs of aspects are directly indicated here. The 
numbering of the aspects reflects their approximate succession within a model 
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lifecycle. The global aspect, for instance, factors out and groups those complexity 
sub-aspects that are valid for almost every lifecycle phase, and it is assigned the 
number 1 in Figure 3.20, and further aspects are assigned the numbers from 2 to 8. 
The aspects with numbers between 5 and 8 are not always present, therefore they 
are grey. 

Aspects of
(model) complexity

recycling

development

  use  

representational

integrative

reuse

verificational

validational

production/replication

variational

marketing

support

communicative

compositional

organizational

combinatorial

functional

attributive

behavioural

descriptive

cognitive
inceptional

computational

perceptional

Aspects of
(model) complexity

 

Figure 3.19. Aspects of complexity that can be handled (relatively) independently 

Table 3.5. Example (common) aspects of different sample entities 
Aspect: 

Entity creating producing using 
meal inventing cooking degustation eating 
sword designing forging teaching duel fighting a duel 
medicament developing producing prescribing taking 
car designing manufacturing driving riding 
aircraft designing manufacturing piloting flying 
car factory planning building, equipping maintaining producing cars 

 
For the purposes of this work let us look into those aspects that are more 

closely related to modelling. The order in which complexity aspects are discussed 
below differs from that in Figure 3.20, and is derived from the (in)dependence of 
one aspect from another. Let us consider when, where and how the complexity of a 
given (sub-)aspect can be computed. 
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3.1.2.2.6.1 Inception-related Aspect 
Every beginning is difficult, due to various causes – among others also 
psychological, technical, cognitive, etc. Yet, most of them come out of the 
opposition between two types of categories, namely: reasons to start (need, 
requirements, customer demands, etc.) and prerequisites (or possibilities to meet 
the reasons). As soon as each element of the former set is satisfied through an 
element of the latter set, the formal conditions for inception are fulfilled. The 
inception-related complexity apparently depends on these two sets, even if this is 
hard to express mathematically. 
 

3.1.2.2.6.2 Cognitive Aspect 
If we assume that complexity aspects arise in the order illustrated in Figure 3.20, it 
is indeed arguable whether the cognitive aspect or the inception-related aspect 
comes first. On the one hand, knowledge about the problem domain is a 
prerequisite for the possibility to elaborate a solution, and in fact the preparation of 
any model is a kind of solution as well. Yet, in many cases the necessary 
knowledge (or a large part of it) is acquired only after the start of the work. The 
latter is especially true when preparing a model of a virtual modellee. 

As indicated in item 3.1.1. in Figure 3.20, no implementation may begin before 
the matter is understood. The process of thinking and cognition is almost 
impossible to grasp, describe and assess in its complexity, let alone to do this 
precisely or express mathematically. Therefore, we may attempt to assess the 
cognitive complexity indirectly, by considering (the complexity of) what has to be 
understood. In particular, the (complexity of) understanding has three primary sub-
aspects: attributive, behavioural and functional.  

3.1.2.2.6.2.1 Attributive Aspect 
Many simple models are just a set of values representing physical, mathematical, 
and other quantities or attributes of the modellee in the model. In order to be able 
to do this properly, the modeller has to know as much as possible about them – 
domain of the attribute, type of the possible values, frequency of change, etc. 
Insufficient knowledge or careless performing of this modelling task can lead to 
huge problems. An example is the Y2k-problem (also known as the millennium 
bug): in many software programs and even in some hardware devices the time was 
modelled in a way that caused overflow at the millennium change (December 31st, 
1999, 23:59:59), leading to information loss and, respectively, to improper date 
display and interpretation. When interpreted by humans, the incorrect time-display 
is just annoying, but in the case of machine interpretation, which is needed for 
proper control, it can be dangerous. 

Since most attributes are scalar, they are represented as numbers, and all that is 
discussed in Section 3.1.2.2.6.5.1 below should also be considered. 

3.1.2.2.6.2.2 Functional Aspect 
As already stated in the previous chapter, the (required) functionality of any model 
depends on its purpose. On the other hand, each function of an object increases its 
cognitive complexity, and each function that is to be implemented in a model 
increases its implementation complexity. 
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Instead of representing the functionality as the set of all (needed) functions, let 
us view it as the equivalent set of all (needed) elementary functions SEF which can 
satisfy it (i.e., a set of non-compound functions, having the same functionality). 
Now, the functional complexity CF can apparently be represented as a function of 
this set CF=f(SEF) or as a function of the cardinality of the set CF=f(|SEF|). 

At some moment every elementary function of the modellee will be represented 
(or modelled) through a software function. The complexity of an elementary 
software function has, in turn, two sub-aspects. The first sub-aspect depends on the 
number of parameters (or independent variables), on the domain, on the co-
domain30 and on the mapping between the former and the latter. It can be called 
exploitation-related or usage-related or external, because it views any function as 
a black-box with certain number of inputs and outputs with an exactly defined 
relation among them – dependence of the outputs on the inputs and possibly also 
on the time. The second sub-aspect concerns only (the complexity of) the 
implementation itself, it depends on the exploitation-related sub-aspect and – 
possibly – also on additional requirements or restrictions. It can be called 
implementational (or implementation-related), since it is almost irrelevant after the 
implementation.  

3.1.2.2.6.3 Compositional/Combinatorial Aspect 
The compositional aspect applies to the complexity of both the modellee and the 
model. Apparently, it depends on the number and type of components as well as on 
the number and type of interrelations among them – cf. Figure 3.14. Whereas it 
seems intuitively clear that the complexity is directly proportional to the number of 
components, this is not always true, or at least not every aspect of complexity is 
directly proportional to the number of components. The “chest of nails” example 
from Edmonds (1999a, p. 44), shows that even a huge number of objects of the 
same type (cf. Figure 3.21) can seem simple “at least in some circumstances”: 

It would be very unusual for someone, on opening up a large chest of 
nails, to exclaim “Oh, how complex!”. This indicates that the mere fact 
that there are a great many nails is, at least in some circumstances, 
insufficient for the assembly be considered complex (this would not 
prevent someone modelling the forces inside the pile considering it 
complex). 

On the other hand, even such a straightforward thing as counting of simple 
objects can be a difficult or “complex” task when they are not ordered – e.g., try to 
count the screws in Figure 3.21. 

A more careful analysis of this example shows that such “circumstances” can 
only be another name for purpose, role or other factors that influence complexity, 
as those in Figure 3.14, and play therefore a significant role. Given three different 
people for three different tasks: to get the nails from the chest, to hammer the nails, 
and to model the forces inside the pile. Each person would have totally different 
impression of complexity of the respective task. Since nothing else is specified in 
the above example, one assumes that all nails are of the same type – in the sense of 
material, form, size, outlook, etc. 

                                                 
30 Earlier often referred to as range of the function. 
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Figure 3.21. A “chest of nails” (26 screws) 

Now consider how the feel of complexity would differ if three chests of the 
same type, containing the same number but differently ordered nails, are 
compared: a) uniformly oriented nails (like the matches in a matchbox, one 
direction only; cf. Figure 3.22); b) nails oriented in two directions (i.e. some are 
rotated 180°; cf. Figure 3.23) and c) not oriented at all (i.e., “chaotically” oriented, 
cf. Figure 3.24)? Of course, case c) leaves the impression of the highest complexity 
and case a) of the lowest, but they all are actually of the same complexity. 

 
Figure 3.22. A box with 10 ordered screws 

 
Figure 3.23. A box with 10 ordered screws (two possible orientations) 
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Next consider how the same persons' feel of complexity would change if we 
start to change the composition of the nails in the chest so that the amount remains 
the same while the number of nail types increases. The impression of complexity 
indeed gets much stronger! More precisely, the uncertainty of our information 
about the system of objects and its possible and actual states increases – this time 
in two dimensions. 

 
Figure 3.24. A box with 10 unordered screws 

To summarize, at least four factors influence the compositional aspect of 
complexity: 

1. the number of distinguishable types of components; 
2. the number of distinguishable components from each type and 
3. the number of distinguishable relations31 among them; the component's 

order (according to their orientation in space, or other criteria) is just one of 
the possible interrelations; 

4. the number of distinguishable relationships from each relation. 
In Goltz (2000) there is a comparison of the complexity of the models of 

bicycle, car, ship/aircraft, expressed by the number of their parameters – 103, 105 
and 106, respectively – saying that “only a subset of parameters is needed for 
sufficient collaborative product development – approx. 500 (0.5e03) for a car”. 
Unfortunately, the number of types of parameters is not given. Parameters can 
influence enormously the flexibility (cf. the previous chapter for definition). If the 
software models are viewed as non-modifiable building blocks or components, the 
flexibility of each component is apparently proportional to the number of its 
parameters: a component with no parameters is not flexible at all (i.e. rigid), while 
the more parameters are used for the component's definition, the higher its 
flexibility is. 

3.1.2.2.6.4 Changeability Aspect (Dependence on Acquired Information)  
Let us try to analyse how complexity depends on the available information about 
the matter. Assume that you have to read a text and you are trying to predict the 
                                                 
31 The term relation is used here in the sense of the totality of all relationships of the same 

type – cf. Sowa (2001). 
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sense of the sentence currently read. At the beginning your uncertainty is infinitely 
high, because the (coming) sentence could express virtually everything. If you 
possess the respective background knowledge, there are no errors in the sentence 
and the sentence is clearly expressed, the chances are that after the end of the 
reading, and possibly a short time for thinking, you will know what the meaning of 
the sentence is. In other words, we could say that the complexity has dropped from 
infinite to zero during the reading. If we consider how the acquired information 
increases during the reading, we can see that the total amount of information is 
built up from at least four components: gain of information from every recognized 
symbol, word, phrase and sentence. With each additional piece of information the 
possible meaning of the sentence becomes more and more restricted, approaching 
the meaning intended from the author. The predictability increases and the 
uncertainty – respectively complexity – falls. Learning is a similar process, leading 
to decreasing of the imaginary complexity. 

When reading a human's writing, there is little randomness in the stream of 
information. In other cases, though, the randomness can significantly increase the 
dynamics of the expected events and thus the resulting complexity of the respective 
system. 

3.1.2.2.6.5 Representational Aspect (Representational Complexity) 
As an idea matures and is elaborated to an archetype (cf. Figure 2.18 in Chapter 
Modelling Basics), the need to represent it increases more and more. Until a 
product or a process is derived from a given archetype, many different 
representations or models may be needed. Even in contemporary engineering, the 
first representation is very often a kind of a sketch, and the last is almost always a 
software model, run on a computer. 

As already mentioned (cf. Figure 3.14), the complexity of a (software) model 
depends, among other things, on its purpose, on the complexity of the modellee 
and on the chosen representation. The representational complexity itself depends 
mostly on the model's purpose and on the implementation. Of course, sophisticated 
(future) products have numerous components which are usually of different types. 
Naturally, different types of components (or objects, or entities) are represented in 
a software model differently. So let us start with one of the easier complexity 
aspects and consider how some of these different types of components are 
represented in a software model. 

3.1.2.2.6.5.1 Numerical Complexity 
The computational complexity is probably the best investigated complexity aspect 
until now. One of the central fields of the theory of computation is even called 
“complexity theory” (cf. for instance Rosenhead (1998); Håstad (1999); or 
Goldreich (2000)) and is concerned with the study of the intrinsic complexity of 
computational tasks, tending to aim at generality. In this text the subset of the 
computational complexity, dealing with the representation of scalar values by 
means of numbers is called numerical complexity. Since in the end every software 
model is represented by means of numbers, the numerical complexity stays behind 
(or forms the basis of) all other kinds and aspects of complexity. But let us see why 
the representation of such a simple thing as a number can be complex. 

Assume we have some sort of storage that is in a sense perfect and allows us to 
store any integer number in it. Since the number of the existing integer numbers is 
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infinite, the probability that the storage has (or represents) certain number N is 1/∞, 
meaning that the uncertainty about the content (or state) of the storage tends to ∞. 
Therefore, the complexity of this variable after Definition 3.1 – let us call it 
numerical complexity and denote it with CN – would be also ∞. Unfortunately, the 
possibility to represent any number from an infinite set of different numbers into a 
(digital) computer is technically unachievable. To surmount this problem the 
following measures are normally applied in the context of (digital!) computers:  

5. The numbers are represented according to a specially developed scheme 
that bounds the integer numbers to some limits. When real (or floating 
point) numbers have to be represented, in addition memory space is traded 
for precision (i.e., each number being saved is rounded to the nearest 
exactly representable one). 

6. For each variable is reserved countable storage with respect to the expected 
limits for varying and precision of the representation; the amount is a 
multiple of byte (8 bits) and usually varies between 1 and 10 bytes 
(although higher values are also possible). 

In this situation it can be assumed with sufficient accuracy that the 
representational complexity of any number depends only on the size of the 
reserved for it memory M, measured in bits, and no longer depends on the number's 
type: 

)2( M
N fC =  (3.11) 

3.1.2.2.6.5.2 Text 
Formally, any text representation in a computer32 could be viewed as a sequence of 
as many codes as the number of symbols in the text. Each code is actually a 
number that can be directly stored in the computer's storage or manipulated as 
needed. Different code tables put each symbol of any (known to the platform) 
alphabet with the symbol's number according to the alphabet's order. Thus, the 
complexity of the placeholder for one symbol of text is equal to the complexity of 
the code (i.e., of a number), used for the internal representation33 of the symbol. 
The complexity of a text of length L (one-byte) symbols would be: 

NLtext CLC ∗=)(  (3.12) 

Equation 3.12 just expresses the apparent fact that the complexity of any text is 
proportional to its length, but many people are shocked by the fact that the text 
complexity is not dependent on the text sense, semantic or “value”. Frizelle and 
Suhov (2000), for instance, mention that Gell-Mann is not satisfied with 
Kolmogorov's definition of complexity: 

                                                 
32 Only the representation of the text through alphabetical symbols and not the symbols' 

appearance in the sense of font, rendering, etc., is meant here! 
33 Each code table establishes the relations between a certain number of codes and their 

visual representation. Some widespread code tables are ASCII (7 bit code, allowing 
representation of 128 characters), ISO (in different variations, but usually 8 bit, allowing 
representation of 256 characters) and Unicode (16 bit, allowing representation of 65536 
characters). 
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He particularly objected to the fact that the complexity of a 
Shakespeare text was less than that of an unintelligible one 
generated by using random numbers. 

Actually, the complexity of the text representation and the complexity of what 
is represented by the text itself are totally different things with totally different 
complexity! In the citation above they are mixed up, which has led to confusion! 
Of course, both the creation of Shakespeare's texts and their content have much 
higher complexity than that of a text “generated by using random numbers”, but 
the complexity of their representation can be comparable or even equal in the sense 
of Equation 3.12. This confirms again how important is the proper understanding 
of the different complexity aspects and distinguishing them from one another. 

3.1.2.2.6.5.3 Geometrical Objects 
Geometrical objects are probably in third place in frequency of use after numbers 
and text. Since their representation relies on the representation of the scalars, 
apparently their representational complexity (not the visualization complexity!) 
will depend on the numerical complexity in the following way: 

v) A scalar will be assumed to have the same complexity as the variable 
representing it. 

w) A point or, respectively, a vector, will have different complexity 
depending on the number of dimensions it has: a one-dimensional point 
(point on a line or on the number line) has the same complexity as any 
scalar. 

x) A two-dimensional point (on a plane) would have complexity: 

NNNP CCCC 22 =+=  (3.13) 

y) Analogously, a three-dimensional point (space point) would have 
complexity as shown in the next formula: 

NNNNP CCCCC 33 =++=  (3.14) 

z) If we express the same with the dimension D as a parameter, instead of 
3.13 and 3.14 we can use: 

NP CDC D *=  (3.15) 

aa) A line segment, represented as start and end point (on a plane or, 
respectively, in space), would have complexity (derived from 3.15): 

NPLS CDCC DD **22 ==  (3.16) 

bb) By induction, the complexity of a poly-line (non-filled polygon) CPL with 
k points would be: 

NPPL CDkCkC DD *** ==  (3.17) 

cc) The complexity of a two-dimensional circle, represented as a centre point 
and radius (cf. the model in Figure 2.34), can be derived from 3.15 and 
3.11 and is: 
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NNNNPCircle CCCCCC D 3*22 =+=+=  (3.18) 

The complexity of a space circle cannot be derived from Equation 3.18 as 
simply as Equation 3.14 was derived from Equation 3.13. The problem is that it is 
possible to build infinitely many 3D-circles through a (three-dimensional) point 
and a radius – i.e., the available information is insufficient to define the circle 
uniquely and unambiguously. Therefore, we need an additional element or 
restriction to avoid ambiguity – e.g., two points on the circle, or a plane 
description, or a vector normal to the circle's plane. The latter option is most 
frequently used, since it is compact and in addition the normal can be used for 
some visualization purposes (in contrast to the additional points on the circle). 
Thus, the complexity of the 3D-circle's internal representation can be expressed as 
a sum of the complexities of a 3D-point, a scalar (the radius) and a 3d-vector 
(having the same representational complexity as a 3D-point): 

NPNPCircle CCCCC *7333 =++=  (3.19) 

By induction it can be proved that the representational complexity of any 
software model of a given geometric object can be expressed as a function of the 
number of its attributes (or parameters) and the scalar complexity CN. 

3.1.2.2.6.5.4 Geometrical Aspect 
Intuitively, the geometrical aspect of model complexity depends on the geometry 
of the model and on the geometrical relations among its components. In addition, it 
depends indirectly on the geometry of the modellee and on the chosen 
representation of the model. For software models of geometrical objects, though, at 
least two different representations are needed (cf. also Section 3.1.2.2.1.1): the 
internal representation, used for (permanent) storing of the objects and for their 
(internal) processing, and an external representation or visualization (see below), 
used to present the objects to the user and, possibly, to other systems. 

Let us consider again the model of a circle, represented in Figure 2.34 of the 
previous chapter. The values of the leaf nodes of the structure represented there are 
sufficient for representing the model of any unique circle internally in some 
system. Actually, if during the saving operation these values are randomly “put” on 
the storage, there is no guarantee that by the next loading of the model (even in the 
same system) each value would go into the respective variable of the model, and it 
would not result in swapping, rotation or full mess of all values. Therefore, the 
consistency of the model (in the sense of proper relations among the values of the 
attributes/parameters and the respective variables) should be ensured by the 
software routines that write and read the model to and from the storage. This 
process is usually called serialization and the routines implementing it – class 
serialization methods. In the object oriented programming the class-specific 
information, including all class methods, is saved separately from the instance-
specific information, but only together these two different types of information 
allow for the use of the model, which is represented by means of numbers. Thus, 
the geometrical aspect of the representational complexity has influence on the 
visualization and on the handling of any (geometrical) object. 
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3.1.2.2.6.5.5 Visualization-related Aspect 
The visualization plays a major role in every engineering discipline. No engineer 
can manage without some kind of graphical representation of his ideas. In practice, 
sketches, drawings, diagrams, flowcharts and many other kinds of visualizations 
are used. Due to this diversity it is difficult to introduce a universally valid measure 
for this aspect. It is obvious, though that the visualization complexity depends 
mainly on its purpose. According to the purpose, an adequate minimally necessary 
quality has to be specified, which is the factor of primary importance in 
determining what kind of visualization is required. 

The second factor with a major influence on computer-based visualization is 
the art of the generated images – vector or raster images. Most contemporary 
computer displays and other devices for graphic output utilize raster graphics, but 
many existing devices use also vector graphics. 

Every raster image (known also as bitmap) comprises a finite number of points 
(known as picture elements, or pixels), whereas every point has one of the number 
of possible colours (known as colour depth). Therefore, the visualization-related 
aspect of complexity of a bitmap can be represented as a function of the number of 
pixels used and the number of possible colours. 

3.1.2.2.6.6 Handling Aspect 
The handling aspect of complexity is relatively little studied. Therefore, we shall 
mention some factors that the handling depends on: 

7. the purpose of handling 
8. complexity of the subject to be handled 
9. order of the components (if it exist) 
10. the nature of the handling itself 
11. the possible ways of handling 
12. interdependencies and interferences of the above factors 

3.1.2.2.6.7 Temporal Aspect 
In many cases we know that a certain event will happen – e.g., because it is 
recurrent – but it is difficult to predict the exact time of the next occurrence. For 
instance: we know that any tool will get broken or worn-out at some moment, but 
despite statistical information about the same tool type, the exploitation conditions 
are so different that it is impossible to predict the exact time. We know that the 
next bus will arrive on the bus-stop approximately as its schedule prescribes, but 
the exact time is difficult to predict. 

The temporal aspect (or component) of complexity is difficult to measure, but 
we could say that it is proportional to the average frequency of the recurring event 
and inversely proportional to the deviation of the events from the average period 
between two occurrences. 

3.1.2.2.6.8 Procedural Aspect 
It seems that the complexity of processing of a group of entities (or also procedural 
complexity) Cproc – in the case of nails example, the complexity of getting, 
hammering or modelling – is directly proportional to the number of the types of 
entities to be processed t and to the complexity of each type TC: 
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∑
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 (3.20) 

Indeed, the processing of a given number of entities when they are stand-alone 
and when they are in a system is different. Each entity could either impede or make 
easier the processing of any other entity of the system. For a system of K entities 
this could be expressed by a two-dimensional matrix correction factors of size 
(K,K) where each element cfi,j is a factor, showing the influence of element i on the 
processing of entity j. Each cfi,i should be equal to TCi, expressing no influence on 
the own processing, while all other factors can be 1 for no influence, have values 
between 0 and 1 for a facilitating effect and values greater than 1 for an impeding 
effect. Note that cfi,j is not necessarily equal to cfj,i, nor to 1/cfj,i. The precise 
formula is still to be elaborated. 

In turn, the effort for processing Eproc depends on both the number of entities of 
each type Ni and the effort for processing of each type TE: 

∑
=

=
t

i
iiproc TENE

1

*  (3.21) 

Apparently, each TE depends on the respective TC in direct proportion 
(although the exact function will vary from type to type), so that we can write 

)(TCfTE =  and after substituting it in Equation 3.21 we get: 

∑
=

=
t

i
iiiproc TCfNE

1

)(*  (3.22) 

Thus, we see that the number of types can have much stronger influence on the 
effort for processing than the number of entities/instances. The determining of the 
dependence of the TE on TC needs additional investigation. This leads to another 
aspect, tightly bound to the procedural aspect: the dynamical aspect of complexity. 

3.1.2.2.6.9 Dynamical Aspect 
Let us for a moment assume that it is possible to take a “snapshot”, describing or 
reflecting everything about a given system in a given moment – number and type 
of components, their structure, organization, position and orientation in space, 
interrelations, etc. The whole information, related to this moment, is usually 
referred to as state of the system and can be viewed also as one of the systems 
models. When comparing snapshots, taken at different (moments of) time, shows 
no difference, the system is considered to be a static one. If the snapshots differ 
from one another, we have a dynamic system. Analogically we can define static 
and dynamic models; in this case, the analysed model is viewed as a model-system, 
and its snapshot can be compared with a meta-model. 

Although it might happen that many snapshots have no discernable difference 
among them, it is quite probable that the system is not static, but rather in a kind of 
equilibrium for the time of observation. If the equilibrium (of the forces 
influencing the system) is breached by some event, the system becomes dynamic 
again. Another possibility is that the changes are simply not detectable or not 
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measurable with the available methodology and tools. Thus, the term “static” is 
usually true only for a specific period of time. 

Indeed, it is difficult to find “really static” systems in nature. A model of a 
system, however, can be static even when the modellee is a dynamic system. Such 
static models (the above mentioned snapshot is one example) can help us, for 
instance, to study time-independent characteristics of the system like structure, 
organization, relations, etc. 

As already mentioned in the previous chapter, each process involves at least 
two objects forming a system, and implies some changes in the respective system. 
Therefore, it makes sense to use dynamic (i.e., time-dependent) models when we 
model processes. According to the dependence of the chances on the time, two 
major types of processes can be distinguished continuous processes and discrete 
processes: 

Definition 3.5: the process, for which any two snapshots taken within 
time Δt, where Δt→0, are different (meaning that 
something changes continuously), is a continuous 
process. 

Examples of continuous processes (at least within the time period observable 
by humans) in nature are the flow of rivers, the movement of celestial bodies, etc. 
Examples of industrial continuous processes are many chemical processes such as 
galvanization, distillation, etc., some metallurgical processes and others. 

Now suppose that we can take snapshots of a given process infinitely fast and 
during the time interval ΔT we have taken N>1 snapshots in equal time intervals 
Δt=ΔT/(N-1), denoted as S1 to Sn, respectively. The following definition can be 
derived: 

Definition 3.6: Given the process Pr is observed during the interval ΔT 
and N snapshots are taken; if within the set of all pairs 
of snapshots with consecutive indices {‹Si, Si+1› | i∈[1,N-
1]} there are both pairs with equivalent elements (Si ≡ 
Si+1) and pairs with non-equivalent elements (Si ≠ Si+1) of 
each pair, the process Pr is a discrete process. 

The time intervals during which the snapshots remain without change are called 
states of the process. Depending on the choice of Δt it is possible to have states 
with duration d>Δt. The changes from state to state are sometimes called steps of 
the process or transitions from one state to another. The following observations 
concerning the states and steps of a given process can be made: 

13. It is possible that over a period of time, some states reappear and other do 
not. 

14. Some processes can have only a small (or countable) number of states, 
other can have an infinite number of states. 

15. The number of observed (or discernable) steps St of any process is always 
greater than or equal to the number of snapshots. 

16. When St > S+1 some of the states appear more than once during the 
process flow. 

17. Processes with an infinite number of states are difficult to predict and to 
model, except if some functional dependency (of the process output on 
time) exists. 
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18. For many processes one or two special steps – start (or initiation) and end 
(or cessation) – can be discerned. 

19. Making the time of observation ΔT long enough, or extending it towards 
infinity, tends to discover that the process is neither continuous nor 
discrete, i.e. it is discrete-continuous. 

20. If the output of an analogous process during the time of observation can be 
described as a periodic function of time, the process is considered to be a 
periodic process. 

21. If a discrete process takes N different states during the time of observation 
ΔT and they recur always in the same order, the process is considered to be 
a periodic discrete process. 

If a compound model is represented as a system of its sub-models (or 
components), its uncertainty will be proportional to the number of components 
involved and to the number of states each sub-model has. Therefore, the 
complexity C of a system built up from N components, each with the minimal 
amount of states (two – e.g., active and passive), will be 

( )NfC 2=  (3.23) 

If the different components have a different number of states s, Equation 3.23 is 
modified to: 

( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∏

=

N

i
isfNgC

1

,  (3.24) 

A higher number of states per component leads to faster increase of the 
complexity. If a component is compound, the number of its states si is directly 
proportional to its complexity and can be calculated by applying Equation 3.24 – 
recursively, if necessary. If a component is defined parametrically, the calculation 
becomes more complicated. In general, the mere presence of a parameter already 
increases the complexity of the related component, but it is difficult to define or 
measure this increase. The particular value of the parameter does not always have 
influence: parameters controlling the metric do not change the complexity, but 
those controlling the topology or the structure of the component possibly do. 

3.1.2.3 Measuring Complexity 
We need to be able to measure the complexity at least for being able to compare it 
in different cases. On the other side, being unable to accurately measure something 
means insufficient knowledge about it. Insufficient knowledge, in turn, means 
incapability to control it, and lack of control means to be at the mercy of chance. 
Therefore, we look for a possibility to precisely assess and measure the complexity 
of any task, system, model, etc., which we have to deal with. 

Considering once again everything discussed until now about complexity, we 
can say that complexity is directly proportional to the number of components N, 
the complexity CN of each component, the relations between components RC and 
others. 

C=f(N,CN,RC…)  (3.25) 
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Then the process complexity can be defined as the uncertainty of predicting the 
next event in a system or the next state (or the changes in the state) of an entity. 
According to its dependence on events the prediction can be of two types: 

• event-independent – when just the time flows but nothing else changes, i.e. 
when the next change within a system is conditioned only by (the 
controlling module of) the system itself,  and  

• event-dependent – concerning the response of a system to a given (already 
known!) event. 

According to its dependence on external influences, the prediction can also be: 

• system-internal, i.e., concerning only the system itself, and 
• all-embracing (or system-neutral), concerning either the immediate 

environment or the whole universe. 

Now let us suppose that the destination is a human and the source is his 
environment as illustrated in Figure 3.25. Similarly to Shannon's approach it is 
possible to describe the probability with which a given event will happen in a given 
context (under context we shall understand some finite number of events that have 
already happened). For this reason we have to know all possible events, the 
probability of their coming and how this probability depends on the previous 
events (i.e., on the context). 

Noise
source

Direction of the information flow

Information
source

(environment)

Transmitter

Destination
(human)

ReceiverChannel /
medium

Received
signal

Message

Message

Signal

 
Figure 3.25. Model of the data transfer between a human's environment and the human 
himself, after the idea of Shannon (1948) for a transfer between a source and a destination 

3.1.2.4 Improving Dealing with Complexity 
Before looking for ways to reduce complexity, we have to know the answers to a 
couple of other questions, e.g., “Which complexity do we want to reduce: design, 
use, maintenance?”, “What is the price of the complexity reduction: reliability, 
flexibility, money or something else?”. And we must not forget that the cause of 
too high complexity may be something useful – e.g., too high functionality. 
Consequently, in most cases it is desirable not to reduce the complexity by 
reducing the usefulness, but to find better ways of dealing with it instead. 
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Let us first consider which complexity could be reduced and when this would 
make sense. Apparently, the absolute complexity of something real or already 
existing (object, product, process) cannot be reduced (but: if this is an artefact, we 
still could work on reducing the complexity of its next version!). The absolute 
complexity of a model, though, can be reduced by choosing either a less detailed 
representation or a more efficient/simple representation of this model. 

Reducing the discernible complexity (even if possible) does not always make 
sense, since important details could be missed. It is possible, though, to reduce the 
complexity which has to be dealt with for solving a certain task. We shall call this 
part of the absolute complexity a due complexity. Since by definition one of the 
main purposes of each model is to allow us to abstract from unimportant details, 
we can assume that to achieve optimal (modelling) results, the essential complexity 
of a model should be equal to the respective problem's due complexity. The 
interrelations of different complexity types are represented as a Venn diagram in 
Figure 3.26. The absolute complexity is not represented, since it almost always can 
be considered infinite. 

 

Figure 3.26. Complexity types and their interrelations 

Luckily, although the due complexity is influenced by all other complexity 
types, its size remains the smallest – especially when the task is properly divided 
into subtasks and they are distributed among appropriate experts. Moreover, the 
due complexity can be reduced by means of several techniques (cf. Figure 3.27), 
but most important are probably two of them: the separation of different aspects to 
deal with (e.g., authoring from use; cf. Table 3.5), and the reduction of the 
imaginary complexity by means of education and training. Even when the 
imaginary complexity is not reduced to zero, the level of the (person-dependent) 
critical complexity would be lowered. 
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Figure 3.27. Ways to master the due complexity 
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Other important techniques concern encapsulation and componentization, 
complemented with conformity-conventions. These techniques reduce the due 
complexity and are well suited not only to software and software models, but also 
to parts of physical products or processes – we can view a gearbox, a suspension or 
an engine as components for a car. 

It is important to develop appropriate methods and tools that would allow us to: 
22. easily achieve encapsulation and componentization; 
23. divide complexity into levels, so that each level can be served, controlled 

or managed by an average expert for that level; 
24. change temporarily/locally the due complexity for supporting the decision 

taking; 
25. selectively view different subsets of components of the model or links 

among them according to different criteria (aspect, level of detail, context, 
etc.); 

26. visualize and manipulate software structures and other elements in a 
number of different ways (graphs, flow-charts, class diagrams, etc.) 

27. split entities or models down to such level that the complexity of the 
respective sub-entities falls below the critical level; 

28. reduce new problems to well-known and well-solved problems, leading 
thus to extended reuse of existing (part-) solutions and increased 
profitability. 

As shown in Table 3.5, the design, production and use of an artefact usually 
have different and independent from one another complexities. This means that if 
these activities are separated from one another, the due complexity, associated with 
each of them will be distributed among different persons, respectively. 

3.1.2.5 Complexity of Software Models 
The complexity of software is a topic that is intensively elaborated by computer 
scientists. Nevertheless, most of this work deals with complexity from the 
viewpoint of a software developer or creator. Since the software does not age 
physically, a reasonably written and error-free program could not only be used 
forever, but also replicated and reused infinitely. If we consider the ratio between 
the number of times a given software is used and the number of times it is created, 
or alternatively, the ratio duration of use to duration of creation, it can be 
discovered that the higher this ratio is, the higher is the appreciation of the 
respective software. In such situations it becomes much more important to be able 
to measure the software complexity from the user's rather than from the developer's 
viewpoint. Since the use of any software is generally easier than its creation, the 
increase of this ratio can be viewed as a way to a better use of human resources. 

Consider for a moment a software program or model as a black box with a 
specified number of inputs and specified number of outputs. Let us define the 
purpose of any software as producing a (data) result by means of processing some 
input data. Since the complexity of a software routine (or function, or procedure) 
from the viewpoint of its user does not depend on the internal states or structure of 
the model, and since by definition the output always depends in the same way on 
the input (i.e., for each combination of input variables there should exist exactly 
one combination of output variables, independently from the number of input and 
output variables) we can say that: 
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• the software complexity from the user's viewpoint (in this case it is the same 
as the due complexity for the user) can be calculated without knowledge 
about the internal structure of a model or the way it works; 

• the due complexity can be viewed as pure numerical complexity (cf. Section 
3.1.2.2.6.5.1 and Equation 3.11) and depend on the number of inputs and 
outputs and on their (theoretically possible) information content. 

• when there are no internal or global variables, influencing the way of 
working, and the inputs and outputs are independent from the time, the due 
complexity SWRoutinedue C  is smaller than or equal to the greater of the sums of 
the numerical complexities of all input variables (each denoted 

iNinp C ), and 

all output variables (each denoted 
jNoutp C ). 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≤ ∑∑

==

M

j
Noutp

K

i
iNinpSWRoutinedue j

CCMaxC
11

,  (3.26) 

Why do I use an inequality instead of an equation here? Let us illustrate this on 
the basis of an example routine – say the routine for calculating the trigonometric 
function sine. What is meant herewith is a routine for a digital computer. This 
routine has one input parameter and one output result. Usually one will use for 
both the input parameter and the result variables of the programming type double 
precision (often denoted simply as double) using 8 bytes or 64 bits of memory. 
Although the real input parameter can vary from minus to plus infinity, leading to 
infinitely many possible values, the respective variable can represent only a 
restricted number of them – exactly 264 (cf. Section 2.4.2.3.1.2). Similarly, 
although the output of the mathematical function sine can take infinitely many 
values between -1 and 1, the routine in question would be able to represent just the 
same finite number of them 264. Now, recall that the sine function is a periodical 
function, meaning that there will be many different angles, differing by a multiple 
of 2π that have the same sine. Consequently, if we test the output values for each 
of the mentioned 264 possible (and unique!) values, many of them will not be 
unique due to duplicates caused by the periodicity. Hence, the output values would 
never take all possible values representable by their variable, or in other words, the 
numerical complexity of the output of this routine is smaller than that of its input. 

The user's due complexity is typically much lower than the due complexity of 
the developer for the same routine. Therefore, a reasonable question can be raised: 
does the ratio between these two due complexities have any meaning? Since each 
software routine is capable of either solving some kind of problem or performing 
some kind of task, we could define this ratio as simplification factor. 

Now how does this apply to software models? As far as we are just (re)using 
ready models, the due complexity for their user could be calculated according to 
Equation 3.26. The so calculated due complexity can also be viewed as a 
functional or behavioural complexity, and should not be intermixed with the 
complexity of visualization, the complexity of a print or the complexity of other 
representations of the model! 

The due complexity for the software model developer has to be estimated on 
the basis of evaluation of the computational complexity. 
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3.1.3 Integration-related Issues 

3.1.3.1 Enterprise View on Integration 
Isolated products, models or objects do not offer much value in the contemporary 
world. Sooner or later, no matter how big an entity is, a moment would come when 
it must be integrated with other entities to get added value. This has been very well 
understood everywhere in industry and academia. Let us look at two examples. 

In Starzyk (2002) is represented a strategic model of the Boeing Process 
Council. Boeing is well known for its aircrafts. Boeing can be viewed as a typical 
original equipment manufacturer (OEM), with subsidiaries in many countries all 
over the world. The main idea of this model is that there are three categories people 
working together (i.e., integrated) – employees, customers and suppliers. The 
people are carriers of the (different types of) knowledge, so they have to be 
supplied with process and technology, on the one hand, and with means for 
cooperative work, on the other hand, in order to achieve integration of their efforts. 

The second example is a statement by the company BEA WEBLOGIC, well-
known for its activities as system integrator. The citation below is an excerpt from 
the Rapid Business Integration 8.1 Datasheet, presented in BEA Systems (2004): 

It’s today’s top challenge—integrating applications, data sources, 
business processes, and people to deliver on objectives for strategic 
business advantage. 

Unfortunately, the process of designing, building, testing, and 
managing integration projects takes way too long. Worse, once 
‘finished’, the story doesn’t end there: the solution is typically 
incomplete, too complex, or doesn’t fully meet dynamic business 
needs. Why? Because business integration is more than just 
integrating applications one-to-one or drawing process flow diagrams. 
It is about providing a versatile environment for modelling, 
automating, and analysing business processes that access enterprise 
applications and enable business users to effectively collaborate. 

If everybody understands the role of integration, a logical question arises: Why 
is it not possible to manufacture integrated products instead of applying integration 
to separately manufactured parts or partial products? 

3.1.3.2 Background 
Modelling of complex products, systems of products and their production is 
typically done by multi-disciplinary teams, working in collaboration. Usually each 
partner or team is specialized in solving the problems, related to a given phase of 
the product's lifecycle, therefore CAx-systems of many different types are used 
throughout the whole lifecycle. Thus, the final modelling is achieved by integration 
of models created in these different CAx-systems. As a result, the integration 
involves a great deal of data processing, the largest part of which is conversion 
from one format/language into another. The following problems are clearly 
observable: 

29. not every needed sub-model is convertible, which leads to quality losses; 
30. not every convertible sub-model is really needed, which makes the 

efficiency questionable; 



www.manaraa.com

3.1 Problems of Contemporary Modelling 131 

    

31. users trust the tools implicitly. In turn this leads to two other problems (32 
and 33); 

32. problems caused by the underlying tools are initially misinterpreted as own 
problems; 

33. the users think (about integration) in tool-specific terms and context; 
34. 29 and 30 lead to data sharing as an alternative to data exchange; 
35. 31 and 34 raise (again) questions like: 

• What is, actually, integration? 
• How can integration be achieved? 
• Is integration achievable in a tool-independent way? 

The quality of a solution depends at most on the quality of the problem 
formulation. Therefore, returning “back to the roots” of the problem and its new 
analysis combined with a search for tool-independent and novel solutions can 
certainly be useful. Moreover, a comparison of the known integration methods in 
software development, mechanical engineering and electronics may lead to 
revealing synergy effects and to mutual benefits for each domain involved in the 
comparison. 

3.1.3.3 Integration of Two Models: Possible Interpretations 

3.1.3.3.1 Definition 
Since integration (of elements into systems, of partial solutions into a complete 
solution, etc.) is a general problem, existing in almost every branch of science and 
industry, there are countless definitions for it. One of the recent and most closely 
corresponding to our understanding definitions is given in Lutters (2001) as “the 
facilitation of mutual cooperation and interaction between distinct functions in the 
manufacturing environment”. In my view, though, the definition would be even 
more exact if it includes the relation between integration and its purpose, therefore, 
we use a slightly modified definition: 

Definition 3.7: the integration of two or more (manufacturing) 
elements is the process of making them work on one and 
the same task or contribute to the achieving of one and 
the same outcome. 

How the integration will be achieved – whether they will be physically joined, 
or will obey to the same control, or just the results of their work will be joined – is 
an implementation question, which is of secondary importance for the end-user, 
but critical for the integrator and for the quality of the achieved integration. 
Therefore, it seems reasonable to perform a more thorough analysis and try to 
discover what are the inherent traits of integration and what they depend on. 

3.1.3.3.2 Integration of Elements 
For achieving good integration we need to know the traits of integration, to specify 
what aspects the integration can have, and to complete some possible classification 
of the integration types. 

3.1.3.3.2.1 Integration Traits 
Our investigation revealed at least twelve such traits, some of which can be viewed 
as input parameters of the integration process and used to control (or at least to 
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influence) it. They are depicted in Figure 3.28, numbered according to their 
approximate importance – the exact order of importance may vary and is case-
specific. 
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The first trait is related to the reasons for integration, which can be 
commercial, organizational, technical, etc. The second trait is the subject of 
integration, i.e. what exactly is integrated, since it is possible to integrate the 
components themselves, or the results of their work, or their use, or the tools 
producing them, or to have some combinations. The third trait concerns the scope 
of integration, or what kind of components are being integrated in terms of sub-
products, sub-processes, sub-models, subsystems, enterprises or a mix thereof. The 
fourth is a composite trait and puts together various aspects of integration, most of 
which are case-dependent. The more important aspects are illustrated in Figure 
3.29 and some of them are discussed in detail below. The fifth trait reflects the 
homogeneity of the involved methods and components, with regard to their origins 
and hosts (or environments). The sixth trait concerns the substance or character of 
the components that are integrated – are they material, energy, data, or something 
else. The seventh trait refers to the standardization grade: is the integration 
achieved by means of a standard, convention, recommendation, or none of them is 
involved in the solution. The eighth trait distinguishes real from virtual 
components and real from virtual integration. The ninth trait describes the need for 
proximity of the components to be integrated: have they to be close, may they be 
distributed and is it possible to have groups of both types. The tenth trait concerns 
the method of integration, i.e. whether certain components are 
transferred/transported, or it is based on (synchronous or asynchronous) 
communication. The eleventh trait is time-related, with two aspects: precedence – 
the relation between the time of the integration and the time of use of the 
components – and duration of the integration and use of the components. The 
twelfth trait concerns the extent of integration – whether it is full or partial. 

Although the numbering of the traits sets them in a particular order of 
importance, this order should be viewed as preliminary and case-dependent. It is 
apparent, though that the trait groups with numbers 1, 2 and 3 have greatest 
influence on the (quality) of the pursued integration; the rest can be viewed as 
depending on the implementation. 

3.1.3.3.2.2 Integration Aspects 

Now let us return to the above-mentioned aspects of integration composing the 
fourth trait of integration. The most important/evident aspects are illustrated in 
Figure 3.29 (the numbering reflects the relative importance of the aspects, but is 
case-dependent). For any two components that have to be integrated, at least four 
of the thirteen mentioned aspects (cf. Figure 3.29) are applicable and have to be 
considered. It is apparent that the integration can have many “faces”. 

From the viewpoint of the end-user the functional aspect appears to be the most 
important, meaning that the product achieves its purpose. For instance, a person 
using a telephone to talk with somebody does not care how the device functions, 
neither how many other devices are involved nor how complex the system is that is 
formed together with the cable infrastructure. From the viewpoint of the engineer, 
though, the integration is more than just a means to an end, especially when the 
only way for the product to achieve its purpose is through integration. In this sense 
it makes a difference whether only the functions of the components are to be 
integrated or also the components themselves.  
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The composition of several elements into a compound entity can be viewed as 
the classical or usual integration, especially when they are all of the same type – 
mechanical or electrical or software – or they all concern the same aspect. In such 
cases we can speak about integration of homogeneous elements, or horizontal or 
extensive integration. If there are at least two components of different types, 
though, we have to do with vertical or intensive integration. If the elements to be 
integrated or different logical parts of a component concern different aspects, we 
shall speak about integration of different aspects. Intensive integration is usually 
integration of different aspects. Example: mechanical (geometrical) and electrical 
aspects of a simple light switch (cf. Figure 3.30). 

   
Figure 3.30. Electrical and mechanical models of one of the simplest mechatronical 
products - a light switch 

Despite the extremely simple logical and electrical models, the mechanical 
model is much more complex. This is due to the need to implement auxiliary 
functionality in order to satisfy the safety requirements (isolation), esthetical 
requirements, environment-dependent requirements (protection against corrosion, 
humidity, dust, etc.) to solve secondary problems (suppression of sparks, fixing the 
wires, fixing on the wall, etc.). As a result, several aspects from those mentioned in 
Figure 3.29 are involved – functional, mechanical, electrical, electro-mechanical, 
etc. In addition, in this example the auxiliary functions are so interwoven with the 
primary function that it is almost impossible to design the individual aspects 
separately and to integrate them afterwards. In similar cases the best possibility for 
integration is to consider all involved aspects simultaneously during the design; in 
case of success the result is referred to as integration by design. However, the 
feasibility of such integration decreases exponentially with the increase in the 
complexity of the modelled/designed/manufactured product, as well as with the 
increase in the level of assembly in a hierarchically structured product. There are 
two reasons for this: a) after reaching a certain critical number of elements the 
complexity grows so much that it is impossible to consider all the involved aspects; 
b) the main method for reducing complexity is to divide and conquer, which is the 
opposite of integration. Therefore, more complex products cross many stages of 
integration, division and regrouping during their development. I argue that the 
optimization of this process is possible and that the most important areas for 
optimization are the integration of functions/structures and the integration of 
aspects. 

3.1.3.3.3 Integration of Functions and Structures 
Although not all integration aspects are applicable to software components (cf. 
Figure 3.29), their integration is also not easy. Nowadays the software is 
indispensable to the product and production development, as well as to numerous 
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mechatronical products. Therefore, let us discuss some specificities of the software 
integration and try to find generally valid regularities that are (or can be) applicable 
to mechanical or other non-software components, too. 

3.1.3.3.3.1 Analysis 
Assume that the basic building block of the (information) systems serving a given 
manufacturing workflow, is called micro information processor (μIP) and contains 
input i, output o, environment input e and environment output eo as illustrated in 
Figure 3.31. 

Legend:

μIP: a micro (information)
        processor
i:      input
o:    output
e:    environment input
eo:  environment output

μIP

e

o

eo

i

 

Figure 3.31. A black box model of a micro information processor 

For now let us not specify whether a μIP consists of hardware, software or 
both: its most important property is that it can perform some processing 
(hence the name). Depending on which connections are in use (or are active), 
one can identify the respective blocks with specific mnemonic names, as given in 
Table 3.6: 

Table 3.6. Typical μIP types (cf. Figure 3.31) 
# i o e eo μIP type 

0 - - - - dead block, no real use 
1 - - - + environment polluter (no real use?) 
2 - - + - environment observer 
3 - + - - generator 
4 + - - - black hole (sink) 
5 - - + + environment controller 
6 - + - + noise/polluting generator 
7 - + + - environment reporter 
8 + - - + data-driven environment polluter 
9 + - + - environment-driven black hole 

10 + + - - transformer (see the text!) 
11 + + + - repeater; programmable device (controller) 
12 + - + + data-miner (see the text!) 
13 - + + + controlled, learning generator 
14 + + - + learning transformer (see the text!) 
15 + + + + environment-aware μIP 

Legend: A “+” denotes used connection, a “-” denotes an unused one. 
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The transformer (#10) deserves special attention, since it can be met most 
often, although in different variations. According to the definition of information 
processor in Avgoustinov (1997), three types of IPs can be distinguished 
depending on the relation between input and output sets of information: filter 
(o⊆i), generator (o⊃i) and converter (o≈i). A special additional case of μIPs can be 
o≡i, meaning that the whole input is “repeated” without changes on the output. In 
this case either the μIP degrades to a pipeline and can be replaced with an arrow, 
showing the direction of the information flow, or we have a real repeater, which 
needs in addition a power supply from the environment (case #11). 

μIP
A

e

o

eo

i
μIP

B

e

o

eo

i

 

Figure 3.32. Serial connection of two μIPs 

Now let us assume that the environment input and output e and eo are used for 
control and that the μIP is sufficiently intelligent to obey the instructions from the 
environment (via e) about what is to be done with the input data and how. A single 
instruction is usually referred to as a command, a sequence of instructions as a 
program. With this assumption it may turn out that μIPs like the transformer (#10 
in Table 3.6) cannot function without a program and have to be replaced by μIPs 
like ##11, 12, 13 or 15. On the other hand, the environment observer (#2) seems to 
be of no use in this case unless it can accumulate the input and self-convert to some 
other μIP after reaching some threshold. 

eoAB2

oABiAB

eoAB1

eAB2eAB1

μIP2

eoBeoA

μIP iB

AB

μIP
A

eBeA

iA oB

oA
B

 

Figure 3.33. Virtual μIP, wrapping two connected μIPs 

Let us consider how such blocks can be integrated (or put to work together). If 
the output of given μIP is compatible with the input of another one, it is possible to 
join both connections and thus also their respective μIPs. Connected in this 
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manner, the two μIPs from Figure 3.32 can be represented by a virtual μIP, as 
illustrated in Figure 3.33. 

In turn, the virtual μIP in Figure 3.33 could be represented in a simpler way by 
an equivalent μIP from the second level of the (modelling) hierarchy as illustrated 
in Figure 3.34: 

eoB

oBiA

eoA

eBeA

μIP
AB

 

Figure 3.34. Equivalent of a serial connection of two μIPs 

Similarly, two μIPs, connected as in Figure 3.35 (left), can be represented by 
their equivalent, shown in Figure 3.35 (right). 

Since the name (input, output, etc.) of a μIP-connector determines its function, 
but not the type of the exchanged signals, it is at least theoretically possible to 
connect (by assuring compatibility of the signals) o to e and eo to i. In this manner 
it is possible to use the output of one μIP to control (program) another μIP, or to 
process program output (part of eo) of one μIP on another μIP as data (or input). At 
this moment we do not see any reason for connecting an input of one μIP with an 
input of another μIP – i with i, e with e or e with i. The same applies to the 
connecting of outputs – eo with eo, eo with o and o with o. 

μIP
A

μIP
B

e

o

eo

i

e

o

eo

i

  

μIP2

oAB2

iAB1

eoAB

eAB

iAB2

oAB1

eoB

eoA=eB

μIP

iB

AB

μIP

A

eA

iA

oB

oA

B

 
Figure 3.35. “Parallel” connection of two μIPs (on the left-hand side) and the virtual 
wrapping μIP (right-hand side) 

On the other hand, it is possible to integrate two μIPs with no connection 
between any of their connectors – cf. Figure 3.36. This kind of integration can be 
viewed as purely mechanical integration and is used mainly to facilitate the 
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handling of several components at once. It has probably the widest use in 
electronics. 

In general, the second-level μIPs can be integrated again with other μIPs from 
the first, the second or other levels and then form processors of higher levels – cf. 
Figure 3.37. 

We shall refer to such compound components as information processors or IPs.  

3.1.3.3.3.2 Classification of (Micro) Information Processors 
Now assume that we integrate several μIPs from the simplest usable type – 
transformer (#10 in Table 3.6) – into a higher level IP. An example with several 
μIPs, connected in different combinations, is presented in Figure 3.38. 

eomeo1

i1

in

o1

op

...

... eke1

...

...

IP

 
Figure 3.37. Higher-level (multivalent) IP 

According to their connection types the components of any IP can be classified 
in three groups: internal (like A3 in Figure 3.38), external (like A7 in Figure 3.38) 
and “mixed” (both internal and external, like A1, A2, A4, A5, A6). 

μIP2

eoAB2

oAB2

iAB1

eoAB1

eAB2eAB1

iAB2

oAB1

eoB

eoA

μIP

iB

AB

μIP

A

eB

eA

iA

oB

oA

B

 

Figure 3.36. “Double-parallel” connection of two μIPs and their equivalent 
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A0

A2 A3 A4

A7

A1 A6

A5

 

Figure 3.38. Specific types of connections among the components of a compound 
information processor 

It should be noted that internal components reduce the externally discernible 
complexity of every component used as a black box. As external components may 
theoretically exist also as autonomous components, they are the first candidates for 
factoring out. Components that have both internal and external connections are 
often referred to as interface components or adapters (see below). 

According to the number of its connections a given component can be singly, 
doubly, trebly or multiply connected. The singly connected components are 
untypical within a compound block, since they are either useless (see the 
discussion after Table 3.6) or could exist as standalone modules. Doubly connected 
components are the most widespread type. Trebly connected components are the 
nearest approximation of the μIPs. The multiply connected components are used in 
all other cases. 

According to their (primary) function the modules or components of a 
compound model can be classified in at least five categories: connector, 
transformer, processor, controller and adapter. 

3.1.3.3.3.3 Connectivity-dependent Traits of μIPs 
Many traits of μIPs either depend on or are related to the number and type of 
connections. Here are some examples: 

• flexibility as a function of the number of connections; 
• productivity as the number of useful outputs; 
• efficiency as a relation between the outputs and inputs; 
• environment-friendliness depending on the type and number of outputs; 
• interchangeability as an inverse function of the number of connections. 
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3.1.3.3.4 Integration of Aspects 
For simplification reasons let us discuss this topic on the basis of models and see 
whether the conclusions are applicable to real objects. Our investigation shows that 
it is easier and advantageous to model the individual aspects separately and then to 
integrate the resulting models. Assume that the modelled object has N aspects, 
represented by respectively named rectangles in Figure 3.39, and the model of each 
aspect has a different number of properties, represented by different geometric 
shapes. Note that some shapes exist in all aspects – e.g., the round shape denoted 
by 5, a and e; we shall call such properties common properties. Some exist in only 
one aspect, e.g., shape b in Aspecti; these properties can be called aspect-specific. 
Some properties exist in several, but not in all aspects. And finally, there exist 
properties specific to the result of the integration of all aspects. They can be related 
to common properties – like 2, which is related to 5, a and e in Figure 3.39 – or to 
other types of properties – like 1, which is related to 4 and 9, but to no properties of 
other aspects in Figure 3.39 – or may arise from the integration and be specific 
only to its result – like 3 in Figure 3.39. These kinds of properties, together with 
the common properties, form the core properties of any compound model34. 

Multi-layer aspect model
AspectN

Aspecti

f

g

e

i9
a

b

d

c

Aspect1

54

7

6

8

h
1

2

3

 
Figure 3.39. Models, aspects and their integration 

Apparently, the integration of any individual aspect to the model depends on 
the percentage of common properties, but should/ought to rely on the core 
properties and has to consider all properties that are related to functions of primary 
importance. The full integration itself (i.e., the integration of all aspects into the 

                                                 
34 Similarly to the Kern-Features (translated to English core features), mentioned in Spur 

and Krause (1997, pp. 177, 510, 511), the core features also play a crucial role 
throughout the whole model lifecycle. 
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model) has to ensure access to all properties35 from all aspects either explicitly or 
implicitly, otherwise it would not fulfil its purpose. 

3.1.3.3.5 Componentization 
According to our investigation one of the best methods for achieving integration of 
functions, aspects or both is the stepwise, hierarchical, component-based 
integration. According to the model centred approach the simplest models (i.e. 
those from the lowest level of the hierarchy) have to be implemented as 
components in the sense of the definition of the object management group (OMG): 
“A physical and replaceable part of a system that conforms to and provides the 
realization of a set of interfaces”, cf. Booch et al. (1999). However, on the one 
hand they do not have to be “physical” (i.e. they can also be software components 
or other immaterial components) and on the other hand they have to be in addition: 
21. self-contained, clearly identifiable artefacts that describe and/or perform 

specific functions and have clear interfaces, appropriate documentation and a 
defined reuse status Sametinger (1997); 

22. software units that are context-independent both in the conceptual and the 
technical domain Ciupke and Schmidt (1996); 

23. building blocks, which can develop independently from the container 
application; in contrast to Stal (1997), they can but do not have to be binary. 

Finally, components can be encapsulated into other components, forming thus 
different levels in the model hierarchy. 

Experience shows that best results are achieved when the components are 
formed according to functional criteria (and not, e.g., implementation-related or 
other considerations). For software models it is reasonable to keep the functionality 
and the structure of each component as close to those of the modelled object as 
possible. The question is whether there is a level of componentization (or 
integration) hierarchy which is optimal for performing the intensive integration. 
Although we still do not have a final answer to this question, we can be assured 
that the lowest level (the level of the elements) is seldom well suited to intensive 
integration. Despite strong case-dependency of the integration (strategy), it seems 
that in general – starting bottom-up – several steps of extensive integration have to 
be followed by one or more steps of intensive integration and then the cycle repeats 
upwards until the desired result is achieved. 

3.1.3.4 Integration-related Issues: Conclusion 
Although the presented analysis is very simplified, it allows us to make some 
important observations. Probably the most important one is that the best way to 
achieve integration is to consider it during the design. Integration by design 
resembles other so-called design for x (DFx) and already well-established 
approaches by the fact that it also shifts part of the development effort towards its 
early phases. It shows how the following of simple design rules can allow one: 

• to reduce the complexity of the components and their models; 

                                                 
35 For completeness, assume that a function can also be viewed as a property. 
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• to reduce the effort for integration without compromising other design 
goals; 

• to increase the component compatibility, integrability, efficiency and 
understanding. 

It is important to note that the proper choice of scope, level and time of 
integration (with respect to the development cycle) plays a significant role in 
reducing the development effort. The defined traits and aspects of integration seem 
to be generally valid and usable for both nonmaterial (e.g., software) and material 
components. 

Another discovery is that probably the most important factor for the technical 
and economical efficiency of the components, as well as for their integrability, 
flexibility, reusability and overall qualities of the systems built up from them, is 
their granularity (average component size).  

Electronics is a nice example of an area where systems with components 
extremely different in size and level of integration are used: of one end of the scale 
are the discrete electronic components such as resistors, capacitors, etc.; in the 
middle are integrated circuits (ICs) with high levels of integration, then come the 
ICs with very large-scale integration (VLSI), and at the end also, ICs with giant 
scale integration (GIS). The higher the level of integration of the components, the 
higher the grade of automation they offer, but at the same time their usability for 
purposes differing from the originally foreseen one, rapidly decreases. Thus, the 
need for flexibility is one of the main reasons why discrete electronic components 
are still produced. 

The large majority of CAx-systems and other contemporary software tools 
(even together with the produced models, which are typically much smaller) lead 
to granularity that does not allow optimal solutions. The CAx-systems resemble 
GIS ICs and their flexibility is similar. Therefore, we should reconsider whether all 
tools belong to the solutions they create, i.e. whether they shall “live” together with 
these solutions or not. For that reason, the simple idea of shifting the focus of the 
product and production development from the software systems/tools onto the 
models themselves can lead to increases in the overall efficiency. This shift can be 
achieved by the placement of product/model specific functions (including those 
responsible for communication and integration with other components) into the 
models themselves instead of into the surrounding software system. In this way the 
models can be made flexible, long-living, intelligent and autonomous, which 
would improve their flexibility and the overall efficiency, too. It is much easier to 
integrate well-designed components than to integrate the systems used to 
create/host them. Along with the redistribution and reorganization of the efforts to 
achieve the same purpose, the main advantage of such an approach is the change in 
the way of thinking: to focus on the task and on the result to be achieved rather 
than on the tool to be used. The major achievement of such an approach should be 
a world of models, where all models can be integrated by design. 



www.manaraa.com

144 3 Conventional Product and Process Modelling 

    

3.2 Problems Specific to the System Centred Approach 

3.2.1 General Observations 

Technology presumes there's just one right way 
to do things and there never is. 

Robert M. Pirsig 

A careful analysis of the SCA shows that in general it has three characteristic 
phases having the following goals: 

dd) to determine the domain of the task; 
ee) to find a CAx-system, well suited to model tasks from the (target) domain; 
ff) to use the system for modelling/solving the task. 
Thus, a CAx-system stays at the centre of any initiative, action and 

development. Removal or replacement of the system can have crucial 
consequences for the development process or in the worst case even break it. In 
addition, the following observations can be made: 

• CAx-systems are comprised of numerous relatively independent subsystems 
or modules. 

• Each module contains one or several programs, closely related with each 
other and dedicated to solving tasks in a sub-domain of the system domain. 

• The modules communicate with each other either by means of direct 
procedure/function calls (APIs36), by common memory or – rarely – by files 
using (internally) standardized format. 

• The programs within a module communicate typically by means of APIs. 
The CAx-systems can communicate with each other by means of: a) data 

exchange; b) dedicated applications exploiting their API; or c) dedicated 
communication modules. Data exchange by means of a database or a PDM system 
can be a special case of b), c) or even a). Modules realizing a combination of the 
cases c) and a), i.e. modules dedicated to preparing large amounts of information to 
be suitable for other system types and to communicate the prepared information to 
the target system as files are often referred to as interface (or import, or export) 
modules. 

CAx-systems typically expose only a subset of the internally known APIs to 
external applications. This is achieved by: a) simply restricting the API-
documentation for the end user; b) exploiting implementation dependent 
mechanisms for access restrictions or c) a combination of the both. The aims of 
these restrictions are: d) keeping the integrity of the system and achieving thus its 
better stability; e) protection of the producer’s know-how (against reverse 
engineering, etc.); f) additional profit (APIs are often sold together with additional 
software tools as software development kits). 
                                                 
36 API is abbreviated from Application Programming Interface. It is a detailed description 

of the names of important functions and their parameters, allowing one to write new 
programs that use these functions. 
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In the case of data exchange (0.a) CAx-systems typically offer at least two 
different formats. Alternatives are the own format, some established standard 
format and the format of some other established CAx-system. 

When the CAx-systems within a given software package have unrestricted (or 
at least extended) communication capabilities with each other, they offer to the end 
user comfort similar to that of an integrated CAx-system. 

The peculiarities of the use of CAx-systems either lead to changes in the way 
the enterprises plan and work or require some additional tasks. In different 
situations or stages of the product development and production this could sound 
similar to the following: 

• Instead of concentrating on solving design problems, the designer has to 
decide which of the available CAD systems is best suited to the current 
requirements. 

• Instead of using the (CAx-)system he is accustomed to, the expert has to 
ensure compatibility with the rest of the production chain first. 

• Instead of extending the CAD model, e.g., with planning and/or 
manufacturing information, the next user of this model in the production 
chain first has to ensure readability and compatibility of the input 
information. 

The experts of modern enterprises are expected not only to “know how” a given 
problem can be solved but also  

a) to “know which” system Sysx is best suited to solving problems of the given 
type; 

b) to have a working copy of Sysx and  
c) to have expert(s) in Sysx. 
The requirements b) and c) and even a) could be “avoided” if the enterprise 

“knows who” can provide the respective (paid-) service for solving the problem – 
in such cases the respective tasks can be outsourced to this external service 
provider. The ready solution, coming back from the service provider in the form of 
a CAx-model, though, typically requires the same CAx-system in order to be used. 
Just a couple of years ago the so-called CAx-viewers (applications, offering 
preview of CAx-models without possibilities for editing) were offered. But they 
could not satisfy the user requirements for the prepared model. Therefore, 
condition b) holds in most cases, even for outsourcing.  

If the diversity of problem types and CAx-system types is considered, it 
becomes obvious that production management has to deal not only with technical 
(achievability, quality) and ergonomic (comfort) aspects but also with the financial 
one (how expensive the solution is). 

Let us reconsider some known facts, as well as unsatisfied industrial 
requirements and try to get to the root of the problems.  

Each CA-system is designed to support a certain phase of the product lifecycle, 
but different requirements can apply to CA-systems serving the same phase in 
different branches. Thus, we can speak about orientation to a certain phase of the 
product lifecycle. 

Models can “live” (i.e. be used) only within a system of the same type as the 
originating system – i.e., they are not autonomous. 

If a compound model is needed, every sub-model created in a “foreign” system 
must be converted in order to be integrated. 
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The number of existing system types is huge and continues to increase, along 
with the average system and model sizes. 

Globalization poses new requirements for data access in a heterogeneous, 
multicultural environment. Due to its nature, however, the SCA is incapable of 
providing for optimal integration and lifespan of the models. 

3.2.2 Problematic Issues 

One of the worst disadvantages of the SCA is that the models inherit the problems 
of the tools, used for modelling – the CAx-systems. Among the most important 
problems are the lack of autonomy of the models created by means of a CAx-
system, as well as the accidental complexity resulting from it. 

3.2.2.1 Usability of a Model 
A model that is not usable has no value. A reusable model has greater value than a 
“once-usable” model. A model that is usable for other purposes in addition to its 
original purpose has added value. Therefore, the usability of a model is a key 
characteristic, which depends on several prerequisites. Among them are the 
model's lifespan, its reliability, its dependence on other elements of the 
environment, such as host and energy, and the availability of qualified users that 
are capable of using the model. Some of these factors in turn depend on other 
factors. For instance, in the worst case the model's lifespan can be as short as the 
shortest lifespan of its components if the respective component is irreparable and 
not exchangeable. If the lifetime of the software model's host is over, and there are 
no more hosts of the same type, then the model cannot be brought back to life 
either. If the host needs energy or some other kind of supply (gas, coal, etc.), which 
is no longer available at that time or place, the model is again unusable. 

An important precondition for a compound model to be usable is its integrity, 
i.e., the simultaneous accessibility of all its components at the needed moment. 
This is achieved by means of different types of permanent or temporary integration 
of the comprising models. 

3.2.2.2 Reasonability for Use of a Given Tool 
Let us define the ratio of essential complexity (i.e., the complexity of the respective 
model) to accidental complexity (in this case, the complexity of the needed tool - 
CAx-system, editor, etc.) as reasonability to use certain tool or as its acceptable 
complexity as follows: 

acceptable_complexitytool=
tool

ellmod

complexity
complexity

 (3.27) 

In the case of extremely simple models or modification types, where their 
complexity tends to zero, the acceptable complexity would also be zero, i.e. such a 
tool is unacceptable. In contrast, the lower the complexity of a given tool is, 
compared to the model's (expected) complexity, the more reasonabile it would be 
to use such a tool. Consequently, CAx-systems are not the best tools for handling 
small models. 
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3.2.2.3 Integration and Communication Problems 
As shown in branch 2 of Figure 3.28, there are at least four ways to achieve 
integration: it is possible to integrate the components themselves, or the results of 
their work, or their use, or the tools producing them, or to have a combination 
thereof. Of course, each of these methods has its advantages and disadvantages. 

The SCA utilizes mainly two methods for model integration: 
24. integration of the models as illustrated in Figure 3.6; 

25. integration (fusion) of the respective CAx-systems. 
The disadvantages of method 24 are that it requires transfer and conversion 

(when the models originate from different CAx-systems) of at least one of the 
models. Any transfer leads to time losses; conversion leads to additional time 
losses, as well as to quality losses. Moreover, conversion is not always possible. 

Method 25 means that the CAx-systems start to use the same internal format 
after their integration, which requires no model conversion and leads to better 
quality of the resulting compound models. Therefore, it seems to be better, in the 
long run, when models of a given pair of CAx-systems have to be integrated again 
and again. But this is not always applicable, and when it is applicable – much more 
effort is required. Even if we assume for a moment that the integration of two 
CAx-systems is always feasible, considering the great diversity of available CAx-
system types reveals that we should not expect the emergence of The Integrated 
CAx-System uniting all CAx-system types (like the earlier idea of computer 
integrated manufacturing or CIM), which would solve all integration problems. 

Now consider the fact that nowadays the size of a CAx-system is typically 10 
to 1000 times greater than the size of any model created with it. Since the size is an 
indirect measure of complexity, and since each of these models lives in the 
respective CAx-system, the resulting ratio of essential complexity (the complexity 
of the model) to accidental complexity (the complexity of the CAx-system) is very 
low, meaning very low efficiency. For this reason it should be clear that there is 
not much room left for the integration of systems – at least not in the mentioned 
sense of system fusion. 

As the use of standards for facilitating or avoiding the conversion of models 
does not show or promise much success (cf. 3.1.1.12 above), the integration of 
models with different origins by the SCA often remains a real problem. 
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3.3 Hypothesis 

A fact is a simple statement that everyone 
believes. It is innocent, unless found guilty. A 
hypothesis is a novel suggestion that no one 
wants to believe. It is guilty, until found 
effective. 

Edward Teller 

The more you study, the more you know. The 
more you know, the more you forget. The more 
you forget, the less you know. So why study 
then? 

Unknown author 

In mechanical and electrical engineering, as well as in mechatronics, the SCA is 
already a well-established approach to the creation and use of sophisticated 
models. Nevertheless, due to the required multi-level and multi-aspect modelling, 
the SCA causes imbalances and disproportions, which lead in the long run to high 
accidental complexity, non-optimal granularity, inefficiency, inflexibility and 
eventually – to extra model costs. The most critical property of every CAx-system 
seems to be its complexity: the author has unofficially inquired for years among 
many designers about an expert knowing more than 10% of the CATIA's 
capabilities: without any success37. If we consider how much is invested in CAx-
system training, it turns out that the system consisting of a man and a CAx-system 
has a not-too-high modelling efficiency! On the other hand, there is a demand that 
knowledge of the problem domain and knowledge of problem solving techniques 
should be as deep and complete as possible. This means that the accidental 
complexity of creating a model by means of a CAx-system is much higher than it 
should be. 

Among other reasons for the mentioned imbalances are the irregular granularity 
of SCA, as well as the uneven use of the different data types. 

The most important requirement for a product is that it has to serve/fulfil its 
purpose. The more functions a given product has, the more complex it is. Each 
required function increases the costs of the product's development and production, 
therefore, the buyers of the product compare competitive products and look for an 
optimal compromise between needed/desired functions, available functions and 
their price. There is a contradiction here: on the one hand, the excess functionality 
of any product increases its flexibility, and since at the time when a tool is 
procured not all possible applications are known, flexibility is very welcome, 
especially in SMEs. On the other hand, nobody is willing to pay for a functionality 
that is not going to be used, even if it is excellent! So how to reconcile these 
                                                 
37 The inquired people were not only able to use the system, but were in a position to 

accomplish sophisticated design tasks with it. 
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contradictory requirements? In Warnecke (1996) the situation sketched here is 
described as “Corrections on the existing are not sufficient anymore, and 
troubleshooting is not the solution.”38 This view seems to be shared by many 
researchers, because numerous attempts to develop novel or alternative modelling 
methods or at least to improve important traits of the conventional SCA have been 
made. Some of these are discussed in Section 4.3. 

At first glance it seems that the key to a solution, successful in both 
functional/technical and economic aspects, is the optimal choice of functionality. 
Yet, despite modularization and countless (module-) configuration and 
customization possibilities when buying a CAx-system, the choice of functionality 
is only possible within certain limits (i.e., the granularity is relatively high). The 
smaller the needed functionality (think of the needs of a SME for a short period of 
time), the higher is the probability that even the system with the lowest 
functionality on the market will be over-dimensioned and possibly unnecessarily 
expensive for the purpose. As a result, the economic viability of a project can 
decrease rapidly. A much better solution from this point of view can be achieved 
by offering functionality on demand – an example is the implementation of a useful 
function as a (web-)service. Combined with ideas like utility computing (a.k.a. 
computing on demand) on the underlying infrastructure level, such an approach can 
lead to mind-boggling results. We shall discuss in the next chapter whether and 
how could such an approach be realized. 

Having considered in addition the problems from the previous sections, it was 
decided to seek alternative approaches to modelling, which would satisfy the 
above-mentioned idea and would also be suitable for SMEs. The discovered 
discrepancies and problems, on the one hand, and the available experience, on the 
other hand, have led to a new concept for development, organization, use and 
lifecycle management of product models, which is especially interesting for SMEs. 
But first we need to formulate the requirements a hypothetical perfect (or ideal) 
modelling approach. 
 

                                                 
38 In original: “Korrekturen am Vorhandenen reichen nicht mehr aus, und Fehlersuche ist 

nicht die Lösung." 
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Towards Better Product and Process Modelling 

If we wish to make a new world we have the 
material ready. The first one, too, was made out 
of chaos. 

Robert Quillen 

4.1 Understanding the Aims 

We must be systematic, but we should keep our 
systems open. 

Alfred North Whitehead 
Modes of Thought 

Software producers and software users understand quite differently the purpose of 
the software systems which support modelling. The former typically try to develop 
systems offering rich functionality, while the latter are concerned about properties 
of the models designed with these software systems, such as lifetime, integrability 
with other models, compatibility, etc. 

Now recall that most CAx-systems for mechanical, electrical or mechatronical 
engineering produce only models that can live in the respective creating systems, 
so that the models form, together with the creating system, a larger compound 
system. As a rule, these CAx-systems are not open, i.e. their users cannot (easily) 
modify them if an adaptation is required. This leads to two problems not mentioned 
until now: (i) the flexibility of a compound system is very low (cf. the definition of 
flexibility in Chapter 2), and (ii) the lack of openness is comparable to the 
circumstances of a mechanical or mechatronical or simply physical system for 
which there are “no spare parts available”. So, the lifetime of such a “closed” 
compound software system is only as long as that of its component with the 
shortest lifetime. Even if the theoretical lifetime of the software components is 
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infinite, due to lack of physical wear, their real lifetime can be extremely short, due 
to outdating or newly arisen customer needs.  

The worst possible scenario is to have to use (systems of) models whose 
lifetime depends on the lifetime of the authoring tools. Such compound systems of 
model and tool cannot be viewed as agile. Yet, this is exactly the case with the 
majority of CAx-systems in the area of mechatronics, which is far from what can 
be regarded as perfect. 

4.2 Requirements for the Perfect Modelling Approach39 

Everything should be made as simple as 
possible, but not simpler. 

Attributed to Albert Einstein 

Sometimes there is a routine in our thinking, which may hinder us in noticing 
evident solutions of banal problems. With sophisticated problems it could be even 
worse – in some cases we seem reluctant to even think about a better solution, if a 
working one exists and is well established. Experience shows that in such cases it 
can be very helpful to forget for a moment all existing solutions, assume that from 
a technical point of view everything is theoretically possible, and try to formulate 
requirements for a solution that would best serve our needs – the perfect solution. 

There is a saying that detecting the cause of a problem is already half of the 
solution. In this sense, defining the requirements (for a solution, for a product, etc.) 
can be compared to a proper splitting down of a problem or task into easily 
solvable sub-problems or sub-tasks. 

Some experts view the elicitation and analysis of the requirements, together 
with the assessment of available means and the analysis of posed restrictions, as 
the most important tasks on the way to finding an adequate solution of any 
problem. In Kotonya and Sommerville (1998) the requirements engineering is 
described as a spiral process, whose sequential components are requirements 
elicitation, analysis, negotiation, documentation and validation. Further, they 
divide requirements elicitation into customer requirements elicitation and product 
requirements elicitation, and requirements analysis into requirements quality 
analysis and suitability analysis.  

Many authors and theories insist, though that even before the requirements are 
specified we should consider the user needs or demands. The requirements can be 
derived then from these needs and demands. In the axiomatic design theory as 
presented in Suh (2001), for instance, four domains are distinguished – customer 
domain, functional domain, physical domain and process domain. Each of them 
has its characteristic vector, representing customer needs (CNs), functional 
requirements (FRs), design parameters (DPs) and process variables (PVs), 
respectively. The axiomatic design – which can be viewed as a kind of generic 

                                                 
39 Even if it is arguable whether there is only one perfect approach or there can be more, 

notions like “perfect” and “ideal” have no comparative degree. 
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problem solving process – goes then iteratively from left (the customer demands) 
to right (the process variables), trying to formulate requirements that would satisfy 
the needs, then to find parameters (or parameter values) that would satisfy the 
requirements, and finally to find process variables (or their values) that affect the 
corresponding design parameters in a way to achieve the desired results. But if we 
discuss the modelling methodology and the respective tools in general, and not in a 
specific case, it is a bit problematic to determine particular customer needs. This 
means that even if we carry out a survey about the needs and desires of the 
(potential) customers, the answers would be so different that they would have to be 
reorganized and probably reformulated and grouped in an observable list of 
generalized needs. Therefore, a quicker and cheaper possibility is to conduct a 
mental experiment and to consider what would these needs and desires be. Suppose 
we start with just one customer need, which is 

CN: get/have perfect models. 
To satisfy this need it is sufficient to define just one requirement: 

FR: use/apply a perfect modelling approach. 
It seems simple but does not change much in the initial situation, because no 
approach until now is perfect and it is still unknown what would be a perfect 
approach. Therefore, we have to do some decomposition and try to find other 
relations. Although according to the axiomatic design CNs do not always need 
decomposition, in this case it would help us clarify the requirements. So, let us 
consider what it means for a model to be perfect. Of course, everybody would have 
his own preferences, but we shall say that perfect models have the following five 
main inherences. 

The most important one is that each model should resemble all important 
modellee traits as closely as possible - CN0. This is necessary in order to ensure 
that any use of a model instead of its modellee would be sensible at least for the 
purpose for which the model is created: CN1. The purpose could be the creation or 
the improvement of the modellee itself, the planning of the modellee's production 
or simply the taking of a (perhaps more general) decision, related to the modellee. 
The next inherence of a perfect model is its unrestrictedness, i.e., the possibility to 
model or represent anything without exception: CN2. Next important trait to be 
expected can be ease and comfort when dealing with the models – model handling 
should be effortless: CN3. Of course, the models should also be robust and 
reliable: CN4. And last but not least – the perfect models should live forever: CN5. 

Now let us see what requirements should be imposed on the perfect modelling 
in order to cover these needs? We shall give the same indices to the corresponding 
requirements in order to keep the correlations clear and easily maintainable. 
Therefore, CN0 leads to the first requirement – allow representation of arbitrary 
attributes: FR1. CN1, respectively, leads to the next requirement – ensure the model 
adequacy: FR2. The requirement correlated to CN2 still cannot be formulated 
clearly at the moment, but we can try again after formulating its sub-requirements, 
which correspond to parts of the decomposed CN2. Thus we say for now that FR3 
is underspecified. The same holds for the requirement, correlated to CN3 – it can be 
neither specified nor named at this stage and just shows once again why the 
axiomatic design postulates zigzagging among the domains during the design 
process. Similarly to FR2, FR4 is underspecified and can be determined/named only 
after working out the details at the lower levels. The requirement correlated to CN4 
could be formulated as use of reliable modelling methods and tools: FR5. 
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Respectively, the requirement correlated to CN5 is to ensure model longevity: FR6. 
Let us summarize all these in a table (Table 4.1): 

Table 4.1. Determining the FRs on the basis of CNs 

# Customer needs: perfect models... Requirements: perfect modelling must... 
0 …can resemble all important modellee 

traits 
...allow representation of arbitrary 
attributes... 

1 …can be used instead of their 
modellees 

…ensure the model adequacy 

2 …have the desired properties …<underspecified> 
3 …offer ease and comfort …<underspecified> 
4 …are robust and reliable …use reliable modelling methods and tools 
5 …live forever …ensure model longevity 

 
The numbering in the first column is used when referring to a row from the 

second or the third column. For compactness, ellipses indicate where a text is 
missing in front or at the end of a sentence. In this sense, demand 4 should be read 
as “perfect models are robust and reliable” (the column title and the 4th row 
jointly), demand 5, respectively, as “perfect models live forever” and so on. 

Note that requirements 0 and 1 are specified, but their further elaboration is 
indispensable for the further analysis. Requirements 2 and 3 could not be specified 
at this stage because demands 2 and 3 are still not clear enough (underspecified). 
But how to define them and which additional requirements should be posed? In 
similar situations Suh suggests in his book about axiomatic design Suh (2001) to 
zigzag between the four domains (customer, functional, physical and process) in 
order to ensure optimal design. So it is appropriate to drive the iteration further and 
try to specify all ambiguous demands and requirements in more details. 

4.2.1 First Approximation 

Before doing the next iteration, let us consider the first attempt to formulate these 
requirements in detail: Avgoustinov (2004) defines six basic and ten auxiliary 
requirements for a “next generation” approach that would better satisfy the 
contemporary modelling demands. For easier reference they are cited below (with 
light improvements): 

R1. Maximally long lifespan of the models (cf. Section 3.1.1.8 above about 
the lifespan of different IT-components). 

R2. Global model access across all divisions of the enterprise. 
R3. Access to (or exchange of) parts of models. 
R4. Global (data/model) integration. 
R5. Use of product data management (PDM). Meanwhile this should be 

extended with use of Engineering Data Management (PDM) and Product 
Lifecycle Management (PLM). 

R6. (More) intuitive, natural and accurate modelling. 
R7. Capability to model product and process data (i.e. static and dynamic 

data). 
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R8. Distributed hosting based on platform-independence. 
R9. Ability to keep the model-related knowledge within the respective 

models or objects (similarly to class properties and class methods by the 
OOP). 

R10. High reusability of models and their parts. 
R11. Capability to communicate offline (data exchange) and online (data 

sharing). 
R12. Extensive support for cooperative work. 
R13. Openness and extendibility: no matter whether it will be concept, 

architecture, approach, format or a combination of them, it should be 
and remain open and extendible. 

R14. Little need for experts to act outside their field of expertise. This 
increases both the technical and the economical efficiencies. 

R15. Either smooth transition of all legacy models and data to the new 
concept or their use in parallel must be guaranteed. 

Of course, this list is far from complete. For instance, Westkämper (2000) 
mentions issues/topics of the “improved manufacturing”, but only their first three 
groups (meeting user demands, quality improvement, and cost reduction) have 
been taken into consideration until now. The ever increasing demand for better and 
more detailed models, requiring also more computing power, suggests another 
requirement: 

R16. Scalability of the complex (systems of) models. 
This requirement could be satisfied by taking advantage of networks and 

building distributed systems. Ideally, therewith possibilities for cooperation would 
be extended too. 

The modelling of (dynamic) processes by means of compound models provides 
an additional requirement, which can hardly be satisfied by models created in 
(different) CAx-systems: models with different origin, location and host should be 
able not only to communicate, but also to work with one another. This 
requirement – cf. Lee (2001) – or feature should be called: 

R17. Interoperability of the created models. 
This requirement also arises – although implicitly – from the combination of 

R4, R7, R8, R11 and R12.  
The idea to employ the digital factory as a model of the (real) production 

process, e.g., as in Bley and Franke (2001), to achieve an optimal real product is 
nice, but leads to ever increasing complexity of the resulting model. After critical 
complexity is reached, neither keeping such a production model monolithic, nor 
keeping it homogeneous is possible. Thus, sooner or later the model becomes 
compound. Then the faster its complexity and number of components grow, the 
sooner the initially used CAx-system reaches its limits, and the necessity to prepare 
some of the sub-models with other CAx-systems arises. Since these systems are 
expensive, the price of complex compound models is also high. If the user and the 
developer of a model are different organizations, the necessity to acquire all the 
CAx-systems involved in the development can be unaffordable (especially for 
small enterprises) and thus turn into a real problem. To avoid this it is necessary 
that: 
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R18. Separated authoring and use of the models (also in independent 
environments) should be possible. 

Some CAx-system developers have already recognized this need and offer the 
so-called viewers for free, in order to increase acceptance of their products. The 
viewers are thin applications capable of reading and visualizing models prepared 
with the CAx-systems from the same and, possibly, a few other brands. The main 
functional difference is that the viewers cannot modify the models. Since both the 
number of supported CAx-systems and the possibilities for integration of 
heterogeneous models are restricted, the use of viewers is not a (general) solution. 

4.2.2 Demands, Requirements, Parameters 

In addition to the (unordered) list of requirements, cited in Section 4.2.1 above, the 
problems and issues formulated in Chapter 3 have also to be considered. 

For easier perception, they are classified and structured in several main 
categories and sub-categories numbered according to their estimated importance. 
The result is presented in Figure 4.1. 

The most important
modelling issues

and wishes

1.Focus:

2.Efficiency:

3.Integrability:

9.Reliability

14.Ergonomics
1.1.on front-loaded modelling

2.1.technical

2.2.economical

2.1.1.performance

2.2.1.prime costs

2.2.2.cheap
exploitation

3.1.by design

3.2.based on
communication:

2.2.3.reusability

2.1.2.scalability

4.Flexibility:
4.1.for the author(s)

4.2.for the users

5.Accessibility:

5.1.global (place-independent)

5.2.partial (only to the 
needed portions of the model)

13.Standardisation

12.Lifetime:

12.1.longer than that 
of the modellee

12.2.robustness

8.Simplicity/complexity:

8.1."as simple as possible,
but not simpler"

8.2.increased ratio between
essential & accidental complexity

8.3.reduce the complexity of use
even on account of the 

development's complexity
8.4.reduce the due complexity

by proper organisation 6.Model's autonomy higher or comparable to that of the modellee

3.3.interoperability-based

1.2.on methods/models/results instead of on tools

14.1.Intuitiveness

14.2.Support for cooperative work

3.2.1.offline
3.2.2.online

7.Portability

10.Distributed hosting, 
based on independence of:

10.1.model use from
model authoring

10.2.model from platform

12.3.(conceptual) durability

11.Safety and security

The most important
modelling issues

and wishes

 

Figure 4.1. Main modelling issues 

A brief comparison of the main modelling issues with the list of requirements 
from the previous section reveals that they have a lot in common. This is not 
surprising, since each requirement for a better approach pursues the elimination of 
one or more issues. Therefore, it is reasonable to compare them and see whether 
they complement each other. 

4.2.3 Ordering the Requirements 

Now we can return back to the formulation of the requirements for the perfect 
modelling approach. On the basis of the material presented in Sections 4.2.1 and 
4.2.2 we can recognize, specify and partly prioritize the customer needs in more 
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detail and define the respective requirements for the modelling down to their third 
sublevel. If necessary, they can be elaborated in even more detail later on. The first 
few levels of mapping of customer needs to requirements can look as presented in 
Table 4.2. Again, punctuation similar to that in Table 4.1 is used, but in addition, 
indentation denotes a lower level (if still unclear, the number in the first column 
should be used for orientation). Needs CN0, CN1, CN2 and CN3 are further 
decomposed. 

Note that the word “delivery” is used in the sense of an unspecified way to 
obtain a model, which could be creation, modification/reuse of an available model, 
purchasing, or something else. The point is that the capability to create models 
quickly is important but creation from scratch is not the quickest way. 

At this stage we could define FR2 on the basis of its constituents as providing a 
modelling (degree of) freedom and FR3 as ensuring modelling expedience. 
The requirements formulated in Table 4.2 offer a reasonable basis for the next 
step – finding appropriate modelling parameters (since we are discussing 
modelling, this term will be used instead of design parameters, as more 
appropriate), which would allow us to satisfy the requirements proposed until now. 
Before determining and specifying these parameters, though, it would be 
appropriate to review some other attempts to develop a better approach than the 
SCA, and try to avoid their disadvantages, while making best use of their 
achievements and benefiting from their ideas and experience. 

Table 4.2. Determining the FRs on the basis of CNs, level two (continued) 

# Customer needs: perfect models... Functional requirements 
0 ...resemble the modellees' most 

important traits, including... 
...allow representation of arbitrary 
attributes... 

0.1 …outlook …outlook 
0.2 …functionality …functionality 
0.3 …behaviour …behaviour 
1 …can be used instead of their 

modellees… 
ensure the model adequacy: 

1.1 ...and lead to comparable results   ensure model plausibility 

1.2 ...for earlier and faster decision 
making 

  ensure quick delivery 

1.3 ...for cheaper decision making   ensure low running costs 

2 …can… provide modelling freedom: 
2.1 ... represent products and processes   allow static and dynamic modelling 

2.2 ...have any type of aspects   design for extensibility 

2.3 ...have any number of aspects   unrestricted model size 

2.4 ...have any size   ensure scalability 

2.5 ...be of any kind (domain-
independent?) 

  use of generic modelling techniques 

3 ...can be easily and effortlessly... ensure modelling expedience: 
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Table 4.2. Determining the FRs on the basis of CNs, level two (continued) 

# Customer needs: perfect models... Functional requirements 

3.1 …obtained…   provide efficient modelling concept(s): 

3.1.1 ...with minimal effort     minimal number of instructions for the 
accomplishment of any task 

3.1.2 ...with minimal costs     ensure cheap creation and reusability 

3.1.3 ...in minimal time     ensure quick delivery 

3.1.4 ...without dedicated qualification     minimise the accidental/due complexity 

3.2 …integrated with other models   design models ready for integration 

3.3 …used   keep models simple and intuitive 

3.4 ...adapted to newly emerged needs   flexibility on all hierarchy levels 

4 …are robust and reliable use of reliable modelling methods and tools 
5 …live forever ensure model longevity 

 

4.3 Attempts to Avoid the Drawbacks of Conventional 
Modelling 

4.3.1 Dissatisfaction of Modellers with Existing Solutions 

CAx-systems have gone through a long development with countless improvements, 
extensions and enhancements. The organization, control and most of all the 
automation of production (design, manufacturing, etc.) are nowadays unthinkable 
without them. Some systems have already such extensive functionality that many 
people think of them as all-mighty. On the other hand, it seems that users are not 
fully satisfied with SCA: each couple of years a new CAx-system type arises with 
the ambition to bring along the missing features as well as processing (or 
modelling) capabilities that will cover the unsatisfied user demands. Researchers 
seem to be unsatisfied too, since numerous novel alternative approaches, methods 
and tools, trying to avoid disadvantages of SCA, are permanently developed and 
introduced. Some of them attempt to extend SCA-created models with new 
functionality, other try to achieve the same or better results by alternative means. 
The number of these efforts not only confirms the existence of flaws in SCA, but 
also speaks of their severity.  

Some more important examples are discussed below, whereas distinctive 
formatting style is applied to more important disadvantages: they start by a 
prefixed with “Disadvantage” number for easier reference later on. 
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4.3.2 Cooperative Modelling with Transient Objects (Integrated 
Engineering System) 

The cooperative modelling with transient objects approach (also known as 
integrated engineering system Gausemeier et al. (1996)) is based on an object-
oriented system design and a CORBA-based access to the internal models of the 
used CAE-tools. It introduces three levels of integration – system, model and 
process – that correspond to layers 1–5, 6 (representation layer) and 7 (application 
layer) of the ISO/OSI reference model, respectively. The integration is achieved by 
means of an application programming interface (API), remote procedure calls and 
inter-object communication at the system level; by file-oriented data exchange and 
a common product model at the model level; by means of a dedicated process 
management module at the process level. The CAE-tools are encapsulated 
intelligent objects, communicating with an object request broker (ORB) at the 
system level, and using STEP-based representation at the model level. As stated in 
Gausemeier et al. (1996, p. 323), the transience of these objects allows “higher 
dynamic” of the system. A disadvantage is: 
Disadvantage 1. Many CAx-developers abstain not only from adopting 

STEP as internal format but also from incorporating STEP converters in their 
systems (due to their size and complexity). Since the “intelligent object” is on 
average smaller than a CAx-model, choosing a STEP-based representation 
for them can be inefficient or suboptimal. 

4.3.3 Network-centric Virtual Prototyping 

The main idea of the network-centric virtual prototyping project is to provide a 
global network-centric and spatially distributed environment, “which enables 
product designers to communicate more effectively, obtain and exchange a wide 
range of design resources during product development” – cf. Lee (2001). The 
approach builds upon a CORBA-supported client–server architecture with 
processing distributed among the server and the clients. The approach relies on 
geometry and other model data coming from CAx-systems over STEP or other 
neutral formats. This approach only pertains to a sub-area of the product and 
process modelling, but is mentioned here since it confirms the doubts about the 
adequacy of the system-centred approach. 

4.3.4 Component-based CAx-systems 

The component CAx-systems approach is presented and discussed in numerous 
publications, e.g., in "ANIKA"), Dankwort (1997), Kilb and Arnold (1998), Arnold 
et al. (1999). According to Poppendieck (2004), its roots lie more than 200 years 
back in history: 

Around 1800, Eli Whitney proposed manufacturing rifles with 
interchangeable parts, instead of crafting each rifle individually. 
Widely regarded at the beginning of mass production, the concept of 
interchangeable parts led to a dramatic increase in rifle production 
capacity while delivering the additional benefits of consistent 
operation and easy field maintenance of weapons. 
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Component-based systems represent a paradigm shift in software 
development similar to that of using interchangeable parts in 
manufacturing. A component-based system is built of standard, 
reusable parts that become the fundamental building blocks of future 
software. Component-based systems promise numerous benefits, 
including flexibility, scalability, and maintainability. 

Although he speaks about software systems in general, this is true for CAx-
systems, too. In short, the idea is to develop component based CA-systems, which 
have more modern and adequate architecture and gradually replace the 
conventional CAx-systems. According to the systematic review of the component-
based technologies and their application in the field of CAx-systems made in 
Janocha and Gandyra (1997), it is essential for a CAx-component to be a binary, 
clearly identifiable building block with well-defined, STEP-based interface which 
implements the relevant CAx-functionality for a given subject area. The integration 
of models, created in different CAx-systems, is arranged online by a so-called 
“CAx object bus”. Conventional CAx-systems are supported by the so-called 
ANICA-adapters (ANICA is abbreviated from ANalysis of access Interfaces of 
various CAx-systems). A disadvantage is: 
Disadvantage 2. The user of any compound model ought to possess (or to 

have access to) all involved in the modelling CAx-systems. R11 is not fully 
satisfied. For each CAx-system involved, separate computer (two systems 
cannot run simultaneously on the same computer) and connections to the 
others are required. It is expected that more developers would be able to 
supply CAx-components than CAx-systems, since the former are smaller and 
easier to develop, but Disadvantage 1 holds here, too.  

4.3.5 Product Data Markup Language (PDML) 

The product data markup language (PDML) was proposed by William Burkett in 
1998 as an “application of STEP technology” based on database scheme modelling 
principles – cf. Burkett (1998). It aims at some improvements – for instance to 
leverage the abstraction and context-sensitivity of the represented information. The 
most interesting trait of PDML is the idea to rely on a generally available, Web-
friendly, universal representation language: XML (eXtensible Mark-up Language). 
A disadvantage is: 
Disadvantage 3. PDML has no native means for representing (lower level) 

algorithms and consequently does not comply (at least) with R7, R11, R12, 
R15 and R17. 

4.3.6 PDM Enablers, PDM Schemas 

An overview of the PDM enablers and the PDM schema is given in Starzyk et al. 
(1999). According to Goltz (2000) the PDM systems offer meanwhile good 
capabilities to manage the amount of data, but only for a single company and not 
for a distributed engineering environment. One of the known efforts to overcome 
these drawbacks by means of federated PDM and database systems is described in 
Abramovici et al. (1998), but there is a danger – that they could lead to a situation 
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like the one that initiated the development of STEP. Disadvantages of the PDM 
enablers are at least that they are: 
Disadvantage 4. Well-suited to only a single company. 

Disadvantage 5. Not suitable for distributed engineering environments. 

Disadvantage 6. Unable to offer solutions for all problems and issues 
discussed in the previous chapter. 

4.3.7 Innovative Technologies and Systems for Integrated Virtual Product 
Creation (iViP) 

The project “Innovative Technologies and Systems for the integrated Virtual 
Product Creation” – also known as iViP (cf. Krause et al. (2002)) is supported by 
the Federal Ministry of Education, Science, Research and Technology and unites 
51 partners from industry and research. It started in 1998 for a period of four years 
and aimed at preparing technology and tools for the heterogeneous and completely 
integrated process flow of tomorrow. The iViP has CORBA–based, server–client 
modular architecture, providing the basis for an open integration platform and 
supporting also existing heterogeneous system worlds. The architecture seems to 
have some similarity with the CAx object bus of the project “ANIKA” – cf. 
"ANIKA" (1998), but offers additional tools to the user. Although at the time of 
writing this overview iViP is not yet finished and the available information is 
scarce, the approach is very promising. 

4.3.8 Process-centred Development 

The component-based approach process-centred development is presented in Jesko 
and Endig (2000) with a relatively simple UML-model with seven (main) 
components. 

4.3.9 PDGL  

Part Design Graph Language (PDGL), described in Krause et al. (1991) and VDI 
2218 (p.46) is a formal language for description of features, developed at TU-
Berlin and based on the standardized in ISO 10303 language EXPRESS. The main 
disadvantage of PDGL is the fact that it inherits a lot of complexity from 
EXPRESS. A standard implementation of PDGL – if it exists – does not seem to be 
very popular. 

4.3.10 Model Driven Architecture (MDA) 

MDA was developed by the Object Management Group (OMG) and adopted in 
September 2001. It conforms with the OMG's mission: to develop an architecture 
for distributed application integration, using object-oriented technology and 
guaranteeing reusability of components, interoperability, portability and (common) 
basis in commercially available software, with freely available specification - 
Soley (2002), Soley (2005). According to Poole (2001), it is based on and extends 
the important OMG standards The Unified Modelling Language (UML), Meta 
Object Facility (MOF), XML Metadata Interchange (XMI), and the Common 
Warehouse Metamodel (CWM). These standards define the core infrastructure of 
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the MDA, and have greatly contributed to the current state-of-the-art of systems 
modelling. 

According to Frankel (2001, p.31) modelling languages can be used as 
programming languages to improve productivity, quality and longevity. 

MDA offers excellent concept and architecture for implementing both 
authoring tools and systems of models. It considers many of the information-
technology-related issues of the modelling, but on a relatively low-level of 
implementation. Therefore, although very suitable for implementation of software 
models, it seems to be unable to solve all problems and issues of mechanical and 
mechatronical modelling – at least not without extensions and improvements. 

4.3.11 Holonic Manufacturing 

Let us first introduce some definitions for clarity: 
Holon: object, which can be viewed as both a part of a given system and as an 

autonomous or compound entity. 
Manufacturing Holon: An autonomous and cooperative building block of a 

manufacturing system for transforming, transporting, storing and/or validating 
information and physical objects. The manufacturing holon has always an 
information processing part and often a physical processing part. A holon can be 
part of another holon.  

Autonomy: The capability of an entity to create and control the execution of its 
own plans and/or strategies.  

Cooperation: A process whereby a set of entities develops mutually acceptable 
plans and executes these plans.  

Holarchy: A system of holons that can cooperate to achieve a goal or objective. 
The holarchy defines the basic rules for cooperation of the holons and thereby 
limits their autonomy.  

Holonic Manufacturing System (HMS): A holarchy that integrates the entire 
range of manufacturing activities from order booking through design, production, 
and marketing in order to realize the agile manufacturing enterprise.  

Holonic Attributes: The attributes of an entity that make it a holon. The 
minimum set is autonomy and cooperativeness.  

Holonomy: The extent to which an entity exhibits holonic attributes.  
Some typical examples of manufacturing holons are: continuous processing 

holon, machining holon, assembly holon, transportation holon and system 
optimization holon. 

In comparison to other well-known notions a holon is cooperative like a server 
in a client–server environment and autonomous like a free agent 
(http://www.mech.kuleuven.be/goa/). To summarize, the holonic approach puts the 
focus on decentralization of the control and decision making, which is achieved by 
incorporation of intelligence in the holons. Sometimes advantages specific to the 
fractal manufacturing (see below) can be also observed. 

4.3.12 Fractal Manufacturing 

According to Warnecke (1996) the term fractal originates from the Latin word 
fractus (broken, fragmented). It is usually described in the literature as a self-
similar geometry or structure, but this definition is somewhat unintuitive and 
inaccurate. What is actually meant by self-similar is that there is some pattern – 
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either structural, or geometrical, or of whatever nature – which can be found or 
recognized on different hierarchy levels within a given object or system. 

Fractal Factory: self-similar, self-organized, self-optimizing, goal-oriented, 
dynamic structure, cf. Warnecke (1996). Goals are also self-similar. 

A (manufacturing) fractal can be viewed as a special kind of holon: it is by 
definition part of a bigger (or higher level) fractal and can be simultaneously 
independent and self-functioning. But on another level in the hierarchy there 
always exists a fractal with similar organization, topology, structure, ways of 
control, etc. These similarities can lead to many advantages – mainly reuse of work 
and simplification. The most important advantage of the approach is that identical 
(control) structures, used on the different fractal levels, lead to more intuitiveness 
and easier predictability, simplifying therewith the control. By means of software 
systems reusability of the control modules is achieved for similar fractals 
(components with the same properties/structure), which leads to cost reduction and 
increases the efficiency. 

4.3.13 Others 

The above survey of some known approaches does not pretend to be complete or 
exhaustive: there exist some approaches that are known but not mentioned here 
because they are not (fully) relevant to our presentation scheme. Other approaches 
might be relevant, but still unknown to the author. Some other approaches are 
really worth mentioning, but are not included in the survey due to time-related 
reasons. Among them are: 

• Bionic Manufacturing 
• Property Driven Design (PDD); KFT, Saarland University described in 

Weber et al. (2003; Weber (2005a;b) 
• Global Manufacturing Interface (GMI), University of Twente 
• Reference Model of Open Distributed Computing: ISO/IEC 10746 
• Modular Factory 
• Multi-agent Systems (Bochmann et al. (2003; Fischer et al. (2003), etc.) 
• BEA WebLogic Integration (BEA Systems (2004) 
• Service Oriented Architecture (SOA) 
• ESPRIT 21955: Working Group on Intelligent Manufacturing Systems 

(http://www.mech.kuleuven.be/imswg/welcome.html) 
• Intelligent Mechatronic Systems (http://www.mech.kuleuven.be/imechs/ or 

http://www.mech.kuleuven.be/ams/) 

4.4 Modelling Parameters 
After detailing so many and different requirements, we have to consider what 
means can be used to satisfy them. Since the focus of this book is more on 
methodology than on software implementation we shall neither go into too much 
implementational detail, nor consider specific solutions or examples. 

4.4.1 Parameters Enumeration 
At the beginning, let us just review which quantities, attributes or traits of the 
models and of the modelling could be influenced directly: those are our modelling 
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parameters. A handful of parameters well-known in software design are given in 
Figure 4.2 together with modelling parameters, which I know from my personal 
practical experience. They are grouped in three main categories: 
strategic/conceptual activities, model organization and implementation modalities. 
Of course, this grouping is neither absolute nor final, but it helps in the 
understanding and handling of the matter. 

Modelling parameters

strategic & conceptual activities model organization implementation modalities

separation of authoring from use

shifting the focus from use of tools 
towards adequate models/results!

interaction resemblance

parameterization
pursuing optimal granularity
platform-independent design
integrability

appropriate hosting

use of patterns

choice of appropriate authoring tools

interoperability

standardization

long living hosts
high performance

low price of the host

new versions backward compatible

tool performance
quality of the delivered models
tool lifetime
tool reliability

new versions backward compatible

low price of the tool

architecture

decentralized
autonomy

max. independence from the host
structure

component-based

open
modular

fractal

clear interfaces

libraries

broker

incorporation of self-awareness

incorporation of intelligence

capability to answer
pre-defined questions
about itself

capability for
self-maintenance

capability to take decisions

capability for
self-improvement

hierarchical
layered

object-oriented
technology

employment of recursion

minimization of the
information content

mnemonics

factoring out reusable 
content

modeller qualification

user qualification

(data) encapsulation

(data) abstraction
(multiple)
inheritance
polymorphism

use of 
user-defined types

proper choice of the 
level of standardization

Modelling parameters

 

Figure 4.2. Most important modelling parameters 

As its name suggests, the requirements in the strategic/conceptual group seem to be 
the most important or have greatest impact on satisfaction of the requirement. This 
could be proved by considering their relations to the main (functional) 
requirements. 

4.4.2 Main Relations Between (Modelling) Parameters and (Functional) 
Requirements 

The functional requirements (FRs) detailed in 4.2 and modelling parameters from 
Figure 4.2 (DPs; for now only the strategic ones) are listed side by side in Table 
4.3. The meaning of ellipses is the same as in Table 4.1. Note that no horizontal 
lines are drawn to stress that no correspondence or mapping is established until 
now. 



www.manaraa.com

4.4 Modelling Parameters 165 

    

Table 4.3. Determining the dependence of FRs on the DPs 

Functional requirements Modelling parameters 
perfect modelling must... 

  ...allow representation of arbitrary attributes... 

    ...outlook 

    ...functionality 

    ...behaviour 

  ...ensure models' adequateness... 

    ...ensure model plausibility 

    ...ensure quick delivery 

    ...ensure low (running) costs 

  ...provide modelling freedom: 

    allow static and dynamic modelling 

    design for extensibility 

    unrestricted model size 

    ensure scalability 

    use of generic modelling techniques 

  ...ensure modelling expedience: 

    provide efficient modelling concept(s) 

      can accomplish any task with minimal number 
of instructions 

      ensure cheap creation and reusability 

      ...ensure quick delivery 

      minimize the accidental/due complexity 

    design models ready for integration 

    keep models simple and intuitive 

    flexibility on all hierarchy levels 

  use reliable modelling methods and tools 

  ensure long model-lifetime 

separation of authoring and use 

focus on achieving adequate 
results 

interaction resemblance 

parameterization 

pursuing optimal granularity 

platform-independent design 

integrability 

interoperability 

standardization 

use of patterns 

host… 

  …long living hosts 

  …host's performance 

  …low price of the host 

  new versions backward compa-
tible 

choice of appropriate tools 

  …performance 

  …quality of the delivered 
models 

  …lifetime 

  …reliability 

  …backward compatible 

  …low price of the tool 

 

 
The next step towards a better (solution for) modelling is to find the 

interdependencies among the functional requirements and the modelling 
parameters. More precisely, in order to satisfy all requirements it is necessary to 
know which of them depend on which parameter, and if there are parameters that 
impact more than one requirement their exact influence should be known. Since 
the determination of these interdependencies – in our case about twenty 
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requirements and about forty-five modelling parameters – takes plenty of time, 
only the results of this investigation are given here, followed by some comments. 
Note that these results can differ if the same analysis is performed from a team 
with different experience, as well as if the sets of requirements and parameters are 
changed due to differences in the analysed case. 

The easiest possibility to represent these results is to use a matrix, similar to the 
design matrix used in the axiomatic design Suh (2001) or in the property driven 
development/design (PDD) Weber et al. (2003); Weber (2005a;b). This is 
illustrated in Table 4.4 and shows how the existence (or the change in the value of) 
a parameter influences the satisfaction of one or more functional requirements. A 
“x” in a cell of Table 4.4 denotes an apparent dependence in direct proportion to 
the requirement, written as heading of the respective column, on the parameter, 
written as heading of the respective row. A “x-1” denotes, respectively, inversely 
proportional influence. A question mark means that the dependence is probable, 
but not sure. Dependencies needing further investigation are denoted “n.i.” 
(abbreviated from “need investigation”). 

If you are familiar with the quality function deployment (QFD) technique, 
Table 4.4 could seem familiar to you or you could even ask yourself, is it possible 
to use QFD here instead or at least to estimate more precisely each relation: yes, it 
is possible. Initially we wanted to give estimation for the strenght of each relation 
in Table 4.4, but we decided that when working with so many requirements and 
parameters it is too difficult to assess the relation strengts properly and consistently 
troughout the whole table when viewing a general case like the case here. 

4.4.3 Rank of Influence 

The next step should be to consider the importance of each parameter, or its rank of 
influence on satisfying the functional requirements. This can be performed on the 
basis of Table 4.4, which illustrates the interrelations between the requirements and 
the parameters. Since both of them are actually represented as hierarchical trees, 
only the leafs of these trees should be compared, otherwise their parents (or 
superordinates) could show mixed relations, which can be misleading. 

In Table 4.4 (page 168) there is one row (labelled “degree of dependence”) and 
one column (labelled “rank of influence”), performing special tasks: they show the 
count of the related items for the corresponding category. In other words, the 
degree of dependence of any requirement shows the number of parameters it 
depends on; the rank of influence shows the number of requirements depending on 
a given parameter. Although these measures are only quantitative, they can give 
first impressions about which parameters are more influential and which 
requirements can be critical to achieve due to a too high degree of influence. Both 
measures consider only the directly proportional influence. Since no qualitative 
measures can be determined for now, there is not much choice but to investigate 
the quantitative aspect. 

Let us begin with the strategic and conceptual parameters. A brief look at the 
table reveals that 5 of the 19 parameters have influence on half of the 20 
requirements or more, whereas 4 requirements depend on the half of the 
strategic/conceptual parameters. As can be seen, the highest rank of influence – 
13 – is assigned to interoperability, followed by parameterization, platform-
independent design and use of patterns, with rank of 12 each. Thereafter follow 
shifting the focus (on the models instead of tools) with 10, separation of authoring 
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from use with 9, and quality of the provided models also with 9. A short discussion 
of these parameters is provided in Section 4.6. 

Note that when a specific solution is considered, achieving cheap creation and 
low running costs are usually viewed as constraints and not as functional 
requirements. But since here they are the result of the search for a generic solution 
(or approach), they are considered as requirements in this case and have to be 
analysed. Also noteworthy is the fact that the prices of the authoring tool and the 
host seemingly have the lowest rank of influence – 1. Actually, despite these low 
ranks the real influence of these two parameters is considerable and will be 
discussed later on. 

4.5 Model Centred Approach 

I have had my results for a long time: but I do 
not yet know how I am to arrive at them. 

Karl Friedrich Gauss 

A new – not burdened with obsolete restrictions, applications and standards – 
approach could allow recent achievements in computer science to bring “fresh air” 
to product and process modelling. But is it at all possible to satisfy the 
requirements presented in Section 4.2 above, if the powerful CAx-systems cannot? 
If Nature is considered for a moment, numerous examples illustrating the (power 
of) natural selection can be found: bigger is not always stronger, groups of small 
animals often achieve more than one big animal; smaller creatures often adapt 
better and propagate quicker than the bigger ones. 

4.5.1 Idea 

The careful consideration and assessment of the techniques presented in Section 
4.3 on the basis of the available information, among other reasons, have led us to 
conceive an approach to complement the SCA, as well as to provide an alternative 
possibility for development of sophisticated, but less complex systems of models. 
This approach – the Model Centred Approach (or in short MCA) – aims at 
avoiding or eliminating the problems and disadvantages mentioned in the previous 
chapter. Its initial description has been presented in Avgoustinov (2002), and 
Avgoustinov (2004). Driving force of the approach is the modelling, comple-
mented by concepts like intuitiveness, object-oriented and feature-based design, 
separation of model authoring and use, multiple levels of detail, aspects, etc.  

Although the SCA has been historically predetermined, it is not relevant for 
contemporary conditions and cannot deal anymore with its own deficiencies and 
with the problems arising. It seems much more appropriate and relevant if product 
and process modelling is performed on an aspect- and object-oriented, model 
centred basis, where the main building blocks are components, implemented as 
autonomous intelligent entities – the main driving force. The “name” model 
centred approach has been chosen as opposite to “system centred approach” and to 
stress the fact that the priorities of the MCA are different. 
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Table 4.4a. Modelling parameter influence on functional requirements (UL part ) 
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Table 4.4b. Modelling parameter influence on functional requirements (UR part ) 
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Table 4.4c. Modelling parameter influence on functional requirements (ML part ) 

  .
..o

ut
lo

ok

  .
..f

un
ct

io
na

lit
y

  .
..b

eh
av

io
ur

  .
..e

ns
ur

e 
m

od
el

 p
la

us
ib

ilit
y

  .
..e

ns
ur

e 
qu

ic
k 

de
liv

er
y

 C
or

re
la

tio
n 

nu
m

be
r

 
1 10 8 3 5degree of dependence   

0.
1

0.
2

0.
3

1.
1

1.
2

  
clear interfaces x x x

libraries x x x
broker x

x

x x
capability to answer 

pre-defined ques-
tions about itself x x

capability for self-
maintenance x x

capability to take 
decisions x x

capability for self-
improvement x x

x x x
x
x

ar
ch

ite
ct

ur
e

M
od

el
lin

g 
pa

ra
m

et
er

s

incorpo-
ration of

intelli-
gence

incorpo-
ration of

self-
aware-

ness

decentralized
fractal

au
to

no
m

y 
an

d 
in

te
llig

en
ce

layered
structure

hierarchical

modular

m
od

el
 o

rg
an

iz
at

io
n

open

compo-
nent-

based

max. independence from the host

 

20
21
22
23
24
25
26

27

28

29

30

31
32
33  

 
Correlation number 1 2 3 4 5  ┼  



www.manaraa.com

4.5 Model Centred Approach 171 

    

Table 4.4d. Modelling parameter influence on functional requirements (MR part ) 
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Table 4.4e. Modelling parameter influence on functional requirements (LL part ) 
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Table 4.4f. Modelling parameter influence on functional requirements (LR part ) 
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4.5.2 About the Name 

What’s in a name? That which we call a rose  
By any other name would smell as sweet. 

William Shakespeare 
Romeo and Juliet. ACT II Scene 2. 

Two approaches, which became very popular during the last decade, are the model-
driven architecture (MDA), initially described in Poole (2001), which is a 
registered trademark of OMG40, and Model-Driven Engineering (or MDE). Accor-
ding to Wiki (2006), MDE “…refers to the systematic use of models as primary 
engineering artefacts throughout the engineering lifecycle. MDE can be applied to 
software, system, and data engineering”, and its best initiative is the MDA. 

A reasonable question arises regarding whether MCA is really different from 
MDA/MDE, and if yes, where the difference is. Since we not only agree with the 
principles of MDE and MDA, which we are aware of, but also follow most of 
them, MCA has a lot in common with these approaches. Nevertheless, there are 
differences – or additions – in MCA, which we want to emphasize. One of the 
ways to do this is to start with the name of the approach. Since every name is a 
model of the respective thing, it has to reflect its most important traits. The terms 
MDA and MDE leave us with the impression that the model is somehow available 
and from now on it (or its use) will drive the engineering (or respectively, the 
architecture). In fact, they are much more concerned with the proper and efficient 
implementation of the models, whereas the MCA deals more with the model 
emergence and model use. 

In (mechanical) engineering it holds that the earlier a certain error is made in 
multi-stage development and the later it is discovered, the worse its negative 
consequences are. For this reason there is a trend to so-called front-loaded 
development, aiming at achieving better overall efficiency of the development by 
means of investing more effort in the early discovery of each possible error. Since 
every product or production development starts with a model, we shall be more 
concerned with the model emergence, because a proper development would lead 
automatically to better use. Therefore, we have tried to choose a name stressing the 
fact that every model (with its properties) is much more important than the tools 
used to prepare it or even the expected product. 

4.5.3 Definitions 

4.5.3.1 Authoring and Authoring Tools 
We shall refer to the process of creating artefacts in its most general sense as 
authoring. Modelling is a kind of authoring. Production or manufacturing are, in 
contrast, not necessarily bound to the authoring of a product, since the product to 
be manufactured emerges during the design (i.e., much earlier) and only the 

                                                 
40 Object Management Group (OMG) has been an international, open membership, not-for-

profit computer industry consortium since 1989. A list of its registered trade marks is 
available on its web-page, http://www.omg.org/legal/tm_list.htm. 
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replicas of a product appear as result of production or manufacturing. The latter is 
itself a result of authoring, and the respective process is called production planning. 

An author can use one or more authoring tools for his (main) activity. Since 
this term reflects only the function of the tool and not its type, it will be used here 
for referring to extremely different types of software tools – from a simple text 
editor to a sophisticated CAx-system or a dedicated modelling environment – as 
long as the context concerns (model) creation. 

4.5.3.2 Host 
The created models have to live somewhere – we named the respective 
environment host. Strictly speaking, the host consists of two main components – 
(computer) hardware and software – whereas in the optimal case the software 
component is infinitely small or non-existent. In our further discussion we 
concentrate our attention on the software and under host we mean only its software 
component, if not explicitly otherwise specified. 

The host software component can have one or several layers. Typically, the 
lowest layer is the so-called basic input–output system (a.k.a. BIOS), the second 
layer is the operating system (or OS), and the third layer is a dedicated software. 
Since the first two layers are generic and their functionality is not used entirely, in 
some special cases – e.g., for use in embedded systems – the dedicated software 
implements only the needed functionality of one or both lower layers. As a 
consequence the resulting software component of the host becomes leaner, needs 
less resources and therefore becomes more efficient. 

4.5.3.3 Synthesis 
There seem to be two ways in which a model or a solution to a given problem can 
emerge: either through gradual development or through testing different 
combinations of existing sub-models (or sub-solutions), and composing from them, 
the sought one. The latter way is known as synthesis (cf. Figure 3.18) and is much 
more widespread than one would initially think. For instance, we go through a 
similar process each time we want to speak: what really happens is that first we 
seek the necessary notions (the components), then the corresponding terms (the 
representation of the components), and finally all these words are put together in a 
phrase – the result of the synthesis. Recalling how often we (have to) speak, it 
would not be exaggerated to say that our brain is much better trained to synthesize 
than to perform a gradual development from scratch. 

Applied to modelling, this means that it could be much more efficient to build 
up large/complex models by means of synthesis than by means of gradual 
development from scratch. Consequently, the componentization of the models, 
followed by a synthesis-based development of the models at the upper hierarchy 
levels, is one of the most important steps towards a better modelling approach. 
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4.6 Inherencies of MCA 

4.6.1 A Meta-solution 

The MCA is a collection of methods for product and process modelling, which 
have to support the models throughout their full lifecycle and especially throughout 
the development phase41 of this lifecycle. The MCA is not bound to (the use of) 
specific tools, but recommends for some activities, specific types of tools; for this 
reason we call it a meta-solution. This meta-solution aims at better organisations of 
the models in compound models or in systems of models, but, of cource, it requires 
some technical and conceptual improvements, too. 

The easiest way to describe MCA is to enumerate the most important of the 
methods and concepts involved – the MCA commandments. 

4.6.2 The MCA-commandments 

1. Separate (the tools for) model authoring from (the tools for) model use 
2. Shift the focus from use of tools towards pursuing adequate models/results 
3. Model for reuse 
4. Make the models end-user friendly (not author/designer friendly) 
5. Take advantage of autonomy and intelligence 
6. Recognize patterns and features and employ them 
7. Try to make models platform-independent and even host-independent 
8. Use appropriate hosting 
9. Pursue optimal granularity 
Some of these commandments are briefly explained below. Since the activities, 

related to (the achievement of) some of them are interwoven, it is not easy to draw 
clear boundaries and to fully avoid repetitions. 

4.6.3 Separation of Authoring from Use 

The separation of the creation of models from their use42 has the greatest impact on 
the modelling process – with almost an avalanche effect on efficiency, price, 
speed, etc. The idea behind this is that the authoring and the use of software 
models are two different phases of the model lifecycle. These phases have different 
timespans – ideally, a model would be prepared for a couple of seconds, but would 
be usable forever – and imply very different functionality. Consequently, it is 
logical and reasonable to use separate dedicated applications to support of each of 
these phases instead of trying to use one CAx-system for the support of both 

                                                 
41 A good description of this phase for mechanical products, together with 

recommendations on how to put it into practice, is given in the guidelines number 2221 
VDI-Richtlinien (1993) of the Union of German Engineers (VDI). 

42 Such separation is natural to all real (as opposed to virtual) artefacts, but as mentioned in 
Avgoustinov and Bley (2006), for historical reasons not (yet) applicable to most software 
models. 
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phases. These separate applications (or software systems), named authoring tools 
and hosts in Section 4.5.3 above, can be developed in such a way that the hosts 
implement only the necessary functionality for the respective phase. So, every host 
can remain much simpler and more compact than any authoring tool, and can be 
viewed as a kind of lean software system. This, in turn, has multiple effects and 
leads immediately to several advantages, some of which are listed below: 

• reduction of the accidental complexity (Brooks Jr. (1987) – since the hosts 
are lean, they are much simpler and easier to deal with than an average 
CAx-system; 

• shifting the focus of the effort onto the result, rather than the tool – the user 
of a model does not have to learn sophisticated CAx-systems; 

• getting the most out of experts due to proper focusing and more efficient 
distribution of the effort – each employee can concentrate on the matter he 
is expert in; 

• getting the most out of hardware which hosts the models, due to more 
efficient distribution of the resources. 

Such a separation may seem to have at least one unsolvable problem: the 
integration of the components of compound models. And it may seem unsolvable if 
one considers it from the viewpoint of conventional modelling – integration of 
models, which are created by means of heterogeneous systems and live in these 
systems. 

The question here is not whether it is possible – a prototype implementation has 
been used to modell different products and processes in engineering areas like 
assembly Bley et al. (2002), machining simulation Avgoustinov (2000a), education 
Avgoustinov (2000b), layout planning Avgoustinov and Bley (2003) and others. 
Instead, the question is about the best way to achieve this separation, and 
eventually the best way to achieve the integration of separately created models. 

One of the best possibilities is to prepare the models as autonomous 
components by incorporating intelligence and communication capabilities into 
them. Thereafter these models can be stored into a (public) repository, which could 
be viewed also as a “component market”, and complemented with a broker as in 
the CORBA concept – e.g., in Siegel (2000). Such an approach can be followed 
even by existing CAx-systems, allowing them to behave conform to MCA. A 
description of a test-bed application is presented in Bley et al.) and illustrated in 
Figure 4.3. 

4.6.4 Separate Modelling 

With the increase in size and complexity of a given mechatronical model the need 
for more computing resources (processor power, memory, visualization capabi-
lities, etc.) also increases. If the model cannot be improved anymore to manage (or 
to live) with less resources, two main choices remain: either to involve even more 
resources – a “brute force” method – or to reduce the number of other programs 
that are running on the same computer in parallel but are not really needed. 

Ironically, the number of the modellers (or sometimes – managers) tempted to 
apply the “brute force” method seems to be much higher than the number of those 
trying to find alternative methods. A probable explanation is that it seems very 
easily and quickly achievable, especially if the so-called “plug and play” method is 
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applicable: acquire additional hardware – there is usually a wide selection 
available – install it and go on. Sometimes, though, the scalability of this approach 
soon comes to its boundaries due to technical or organizational reasons. 

In computer science the problem has been known since the very beginnings of 
computer use, and one of the early answers was the so called separate 
compilation – splitting of every program into relatively independent modules – so-
called compilation units – that can be compiled separately but later on can form 
again one entity by means of so-called linking. Separate compilation offers a lot of 
advantages, e.g.: 

• each compilation unit needs less resources for compilation than the whole 
system or entity; 

• changes that have to be made to one module do not require compilation of 
the other modules; 

• it is easy to organize the development of the separate units in parallel, and 
as a result to complete the developed product much earlier. 

Is such an approach applicable to modelling in mechatronics? Yes, but there are 
a few prerequisites: 
26. It should be possible to prepare the separated models (or, similarly to the units 

in the separate compilation – model units) independently from one another; 

27. It should be possible to integrate the prepared model units or components after 
their separate authoring without remodelling or converting; 

28. Assuming that a given entity has been split for separate modelling since the 
resources are insufficient to model (or to author) it as a whole, there should be 
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Figure 4.3. Scheme for applying MCA to existing conventional models after Bley et al.
(200 ) 2
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a guarantee that the combined (or “linked”, or integrated) entity will not 
require more/additional resources. 

So, let us see what the resources are used for and how we could utilize them 
better. Assume we are analysing a hypothetical platform where only the software 
necessary for modelling is running. Then we have an operating system and an 
authoring (or modelling) tool running on the respective hardware. In the case of 
SCA, the authoring tool is some CAx-system. In MCA it can be a CAx-system, a 
simple text editor or some specialized tool. 

Suppose for a moment that the so called virtual memory has not yet been 
invented, and in order to work with a model, everything needed – BIOS, OS, 
authoring tool and model – has to be loaded into the main memory. Moreover, 
some additional space is needed for temporary/working storage. Assuming that the 
memory is organized linearly, we can represent this visually as follows: 

BIOS OS Authoring tool Workspace Processed
model

 
Figure 4.4. Distribution of the software in the computer memory at a given moment 

Now consider the following: 
• The least useful thing in memory is the workspace, but usually the 

workspace needed for processing a model is directly proportional to its 
size. 

• Economists and manufacturing planners try to achieve maximal workload 
of all resources, which means that in the worst case the largest models 
either cannot be loaded at all or the workspace is insufficient and they 
cannot be processed. 

• The largest amount of memory is usually occupied by the authoring tool 
(especially in the case of a CAx-system). 

Now compare the typical sizes of a host and a CAx-system (graphically 
represented in Figure 4.11 on page 189). Assume that you have created (authored) 
ten equally large models – so large that even 1 byte larger would not fit in the 
memory for processing. Now check whether the memory would be sufficient for 
all ten models plus the hosts for all of them if you remove the authoring tool (it is 
not needed anymore). You will be surprised how much memory can be found in 
any old computer! 

4.6.5 Organization and Architecture 

A MCA-conforming model should be capable of representing not only the 
functionality of the modellee but also other aspects like outlook and behaviour (cf. 
requirements 0.1, 0.2, 0.3 from Table 4.2 and Table 4.4) and arbitrary attributes. 
This can be achieved by employing hierarchical (data) structures, organized in 
layers with different levels of detail (LODs). One of the prerequisites for achieving 
flexibility is that the building blocks of this structure ought to be components 
(more about flexibility in 4.6.7 below). 
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4.6.5.1 Components 
The object models are abstract in contrast to their modellees, which are usually real 
objects. In the case of SCA they have a kind of formal representation (possibly 
even several representations). For ideal modelling (pursued by MCA) it is not 
enough to have simply representation of the modellee, since it would be passive. In 
order to satisfy requirements like R7, R11, R12 and R17, models have to be able to 
perform activities. This means that each MCA-model shall contain either an 
implementation of the related algorithms or links to their well-known or standard 
implementations. On the one hand, the simplest MCA-models (i.e. those from the 
lowest level of the hierarchy) have to be implemented as components, in the sense 
of the components definition of OMG and the additional three requirements, 
presented in Section 3.1.3.3.5 (on page 142). On the other hand, requirements such 
as 3.1.1 can be satisfied mainly through incorporation of intelligence into the 
components above a certain level in the hierarchy. 

4.6.5.2 Hierarchy 
The next important consideration concerns the correspondence among modellees, 
models and components (cf. also the term similarization in 4.6.7.2 below). Since 
numerous components already exist as implementation of different, mainly 
computer or computation related objects, it is rational to use them during the 
design, composition and implementation of our engineering models in components. 
Therefore, even the modelling of the simplest engineering component (e.g., nut, 
bolt, gear, etc.) will be a model that is a compound software component, relying on 
numerous existing (software) components from different component libraries. Due 
to some additional requirements for these compound components, they should 
implement a number of interfaces (in the sense of OMG) and obey a list of 
conventions. We shall call the resulting pieces of software Autonomous Intelligent 
Entity (AIE) and classify them as the basic building block of MCA. On the next 
level in the hierarchy (cf. Figure 4.5) comes the composition of interconnected 
AIEs, which form an autonomous intelligent unit or module (AIM). AIM is usually 
a model of a whole device, aggregate or assembly group. In turn, binding several 
AIMs together (possibly also AIEs or other components from the lower levels) 
forms an intelligent system. When some of the AIEs are on other computers and 
are connected by simply communicating over the network, the resulting system is a 
distributed intelligent system (DIS). AIEs and AIMs can be nested and intermixed 
arbitrarily, have “loose connections” among the modules and might employ some 
redundancy to improve their performance, reliability or fault-tolerance. 

It should be stressed that the implementation language or architecture have 
secondary meaning as long as models, implemented differently and separately, are 
able to interact/interoperate with one another. Otherwise, my practical experience 
confirms the ascertainments of other authors like the one of Janocha and Gandyra 
(1997) that the Java slogan “Write once, use everywhere” makes sense, especially 
if extended with “(reuse) forever”. 

 

4.6.5.3 Modelling Hierarchy (Holarchy) 
On the one hand, according to MCA, almost every model above a certain level of 
the modelling hierarchy can be viewed and used as an autonomous entity (i.e., a 
standalone whole). On the other hand, in both real life and the modelled worlds it 
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is not clear what stands on the top of the hierarchy – the “root”. We can always 
think of something bigger that includes or embraces everything known or defined 
or mentioned before. Let us give an example that “remains on the earth”, although 
it is possible to model whole galaxies or even larger (unnamed until now) objects: 
assume we want to model a machine tool. It is probably placed in a workshop – the 
next embracing object. So we would need to model the workshop too, and we have 
the next embracing model. The latter is one level higher in the hierarchy but can, 
nevertheless, be part of yet another embracing model – e.g., the model of a plant or 
enterprise. In this example each of the mentioned modellees or its respective model 
fulfils the definition of a holon (cf. Section 4.3.11 above). 

Due to other considerations (cf. 4.6.7 and in particular 4.6.7.4 below) it appears 
quite sensible to make the autonomous entities also intelligent. Thus the 
autonomous intelligent entity – the main building block in MCA – has been 
conceived. Although it emerged as a general term that can be used on every level 
of the modelling hierarchy, and – technically seen – it can contain other AIEs, 
sometimes it is reasonable or comfortable to use names, specific to a given level – 
e.g., product model, process model, gearbox model, machining model, etc. An 
example is presented in Figure 4.6. 

Such a hierarchy – no matter whether referring to models or real objects – is a 
typical example of a holarchy (holonic hierarchy, cf. again Section 4.3.11 above). 
Since in Figure 4.6 the main components are, again, AIEs and since they are the 
main building blocks of all models in MCA, they are presented in more detail in 
the next section. 

 

Distributed Intelligent System 

Autonomous Intelligent Units/Modules 

Autonomous Intelligent 
Entities 

Features

Model data 
(geometry, etc.) 

 

Figure 4.5. Simplified representation of building blocks in MCA hierarchy 
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Figure 4.6. Holarchy by models of enterprises with arbitrary complexity after Avgoustinov 
and Bley (2003) 

4.6.5.4 Autonomous Intelligent Entity 
Consider the structure of an AIE of the lowest level – the product component 
(management) level in Figure 4.6. It is presented in Figure 4.7. Note that some 
modules of an AIE are case-specific – e.g., model data, self-knowledge, whereas 
others are type-specific (i.e., inherent to every AIE) – like control and 
communication or links to primary components (cf. Figure 4.6). Note also the two 
types of symbols representing code (rectangle) and data/information/knowledge 
(the disk symbol). 

Control and
communication

Communication
conventions
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(geometry,etc.)

Links to primary
components
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Figure 4.7. Structure on an Autonomous Intelligent Entity 
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4.6.5.4.1 Properties 
In Avgoustinov (2004) the AIEs are briefly characterized by describing some of 
their inherencies as in the following (pseudo) table: 
Autonomy: AIE can take most decisions itself. 
Multi-state: AIE has the following states: dormant (saved on a medium, 
waiting); passive (the AIE is being edited/modified); standby (ready to answer 
requests); learning (acquiring additional information, which leads to new/different 
processing of changes in the environment) and active (functioning). 
Persistence: AIE has a formal representation for saving on a (non-volatile) 
storage, obeying carefully defined but natural, preferably self-evident conventions. 
Self-contained: All model-relevant data and implementation of the typical 
functionality are defined in the AIE itself. 
(AIE)Host: Environment providing living conditions for an AIE (i.e. 
conditions for its active state). 
Independence: Entering into an active state depends either only on the 
availability of an appropriate host or on nothing at all. 
Holonomy:  Typical AIEs can be used alone, used to build up other AIEs or 
to be built up from other AIEs (i.e. they are compound). This matches the main 
characteristics of a holon. 
Structure: AIEs are hierarchically structured and use different levels of 
detail (LOD), depending on the context. Neither the level number nor their content 
is necessarily pre-defined. 
Stratification: The aspect-related information and functionality is organized in 
layers. Viewpoints of experts in different subject areas (aspects) can be represented 
and used in the model. 
Reflective: AIE is capable of exhibiting the most important own interfaces to 
(the rest of) the environment. 
Procedurally representable: It is more appropriate and desirable to represent 
some (sets of) objects or portions of the models by parameterized procedures. 
High flexibility: Achieved through parameterization, expandability and 
adaptability. 
Parameterized: Provide a way for changing their appearance and behaviour 
through parameters. 
Expandability: AIEs provide a way (API, reflection, documentation, etc.) for 
defining new properties, functionality, etc. on the base of the existing ones. 
Adaptivity: An AIE can be changed without need to change the existing 
interfaces and can add new interfaces without need of internal changes, too. 
Finally, the AIEs are harnessing the OOT and benefit from its key features like 
inheritance, encapsulation, data abstraction and others. 

4.6.5.4.2 AIEs vs. Autonomous Agents 
A frequently asked question is whether there is any difference between AIEs and 
agents. The short answer is yes, because an AIE models (a part of) a product or 
process, whereas an agent usually models or implements mainly one or more 
activities, which are often mapped to activities of a human. 
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An agent is defined in Howe (2006) as follows: 
In the client-server model, the part of the system that performs 
information preparation and exchange on behalf of a client or server. 
Especially in the phrase “intelligent agent” it implies some kind of 
automatic process, which can communicate with other agents to 
perform some collective task on behalf of one or more humans. 

Some important properties of an agent, according to Franklin and Graesser 
(1997), are given in the first four columns of Table 4.5. The last column is added in 
order to show which of these properties are relevant to an AIE. 

Table 4.5. Autonomous agents, after Franklin and Graesser (1997) vs. autonomous 
intelligent entities (AIEs) 

# Agent  
Property 

Other 
Names Meaning 

Availability of the 
property in AIEs 

1 Reactive 
(Sensing 
and 
acting) 

Responds in a timely 
fashion to changes in 
the environment 

Possible, but not 
necessary 

2 Autonomous  Exercises control over 
its own actions  

Yes 

3 Goal-
oriented 

Proactive 
purposeful 

Does not simply act in 
response to the 
environment 

No. Object (model), 
purpose and aspect 
oriented 

4 Temporally 
continuous  Is a continuously 

running process 
Possible, but not 
necessary 

5 Commu-
nicative 

Socially 
able  

Communicates with 
other agents, perhaps 
including people 

Communicates with 
other AIEs, and possibly 
but not necessarily with 
people (sensors) 

6 Learning Adaptive 
Changes its behaviour 
based on its previous 
experience 

Desired for the system 
of AIEs and for some of 
the AIEs, but not always 
necessary 

7 Mobile  
Able to transport itself 
from one machine to 
another 

Yes 

8 Flexible  Actions are not scripted
Parameters, extendibili-
ty, inheritance, 
exchangeability 

9 Character  
Believable 
“personality” and 
emotional state. 

Possible, but not 
necessary 
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4.6.5.5 Model Independence 
One of the recommendations of MCA is to create models that have minimal 
dependence on other software – ideally none. Reducing the dependency on a 
platform (or at least on a CAx-system – cf. Section 4.6.3) of the models to a 
minimum (cf. requirement R8 in Section 4.2 above) can: 

• reduce the accidental complexity; 
• allow shifting the focus onto the most appropriate and important part of the 

task – the modelling (and therefore, on achieving better results); 
• improve the predictability of models and systems of models; 
• reduce the effort for learning/training and maintenance; 
• allow the product models to be embeded in their embodiments (e.g., saved 

on a micro-chip or RFID). 
Eventually, all this leads to better efficiency. 

 

4.6.5.6 Homogeneity and Distribution 
When a system of models is built up from independent components it is often 
reasonable or necessary to distribute these components on different computers, 
perhaps even having a different geographical location. At least three important 
questions arise: 

• If the separate components can live on different computers, could they also 
be integrated and how good/reliable would such an integration be? 

• How do the properties of such a compound system depend on the 
distribution? 

• How maintainable is a distributed system? 
The answer to the first question is discussed in 4.6.6 below. A first 

approximation to an answer to the second question is presented in Figure 4.8 on the 
basis of well-known schemes for computer use and their traits. Note that the traits 
mentioned refer always to the computer on which the users are directly working, 
i.e., on workstation, peer (i.e., arbitrary network-ready computer), client and 
terminal. Since the boundaries between the different schemes of connection/use are 
fuzzy (i.e., one computer can participate in multiple schemes simultaneously), the 
dependencies in Figure 4.8 are presented as curves rather than bar charts. 

The answer to the question about the maintainability of a distributed system can 
be given in a similar way. Figure 4.9 presents an estimation of the maintenance 
effort for different schemes of computer use. Note that the domains of different 
possible variants within a given scheme are denoted approximately by means of the 
labelled grey areas beneath the x-axis. 
As one can see, there seems to exist a kind of minimum in the total effort when 
using a client–server scheme. 

4.6.6 Integration 

Longstanding experiments in the fields of model exchange and integration have led 
the author to a somewhat surprising conclusion: no modeller has difficulties when 
integrating his own models, even if they are modelled in different authoring tools. 
It was not easy to answer why this is so, but after long investigation, the conclusion 
was that when a modeller integrates two or more own models: 
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Figure 4.8. Important traits of well-known schemes of computer use depending on 
(de)centralization (dependency grade) 
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Figure 4.9. Maintenance effort for different schemes of computer use 
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• he works purposefully because the integration takes place within his domain 
of competence; 

• he knows the models and their specificities better; 
• he usually proceeds with the integration bottom-up.  
The latter should not be underestimated: the point is that when the smallest 

models are integrated first, the resulting compound models have lower interface 
pressure (respectively, interface resistance, cf. the respective definition in Section 
2.4) and lower due complexity (cf. Section 3.1.2.4). 

In contrast, most problematic are those cases where a user (i.e., not the 
modeller himself) tries to integrate heterogeneous models by means of conversion-
supported transfer of a whole model (known as model/data exchange). In this case 
none of the four observations mentioned above can be true: the models are 
heterogeneous; the work can hardly be purposeful since the integration takes place 
on a higher level (often beyond the boundaries of the user's domain competence); 
model parts are integrated regardless of their need and the foreign model is 
scarcely known. The integration can be described as top-down, which leads to 
higher uncertainty in the process flow. 

Our analysis reveals the major factors: wrong or improper choice of subject, 
scope and standardization grade of the integration, together with insufficient 
qualification of the modeller/user (cf. Figure 3.28 in Section 3.1.3.3.2). A 
secondary but still important role is played by the method and the pursued extent of 
integration. Taken together, these factors lead to unneeded (due) complexity, lack 
of control, and inefficiency. 

To avoid these problems, the MCA relies upon the following decisions (please, 
cf. again Figure 3.28 and Section 3.1.3.3.2): 

a) choice of the functionality as integration subject (vs. physical integration 
of the components themselves or even integration of the authoring tools by 
SCA); 

b) reduce the integration scope to a minimum – i.e. integrate only what is 
necessary (lean integration); this requires appropriate granularity of the 
(pursued) system of models; 

c) use the minimal standardization grade (cf. Figure 3.5 in Section 3.1.1.12); 
it seems that on the lower levels, conventions not only suffice, but cause less 
problems than standards; 

d) use event/message-driven interaction/communication as an integration 
method when possible; otherwise use the next preferred method – data sharing, 
and only if no other possibilities remain use data/model exchange; 

e) never use the full extent of integration if not necessary; 
f) encapsulate the resulting integrated model and define clear interfaces for 

its use; 
g) delegate the integration to dedicated pieces of software (integrators, cf. 

Figure 4.10) and to the models themselves; the integrator is known as broker in 
CORBA – cf. Siegel (2000). 
The described approach for integration achieves the shift from the upper system 

levels down to the model, sub-model and component levels and offers more 
advantages in almost all aspects. 

• they are usually more homogeneous (i.e., created in conformance to 
uniform concepts, obeing the same unwritten rules, style, etc.);  
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Models "live" in Internet, and are integrated by means 
of communication either directly or through an integrator

Model A
in format A

Object/model
integrator
(Broker)

Model B

 

Figure 4.10. Component-based model integration after Avgoustinov  

4.6.7 Achieving High Flexibility 

Model flexibility is a trait that is much sought-after but not always available to the 
desired extent. The more sophisticated or specialized a model is, the lower is its 
flexibility. Considering that most models are compound or, actually, even systems 
of models, it is important to know what the flexibility of such models depends on 
and how it can be improved. 

The analysis of different existing CAx-systems, computer systems and systems 
of models has led us to the definition of four main (groups of) factors that have 
immediate impact on (model) flexibility. These are model organization, 
extensibility, modelling for reuse and knowledge-based, distributed decision 
taking. The MCA relies upon optimal use of all these factors and especially on the 
intensive use of the last one. 

4.6.7.1 Model Organization 
The flexibility of a model requires no radical change of everything in it. On the 
lowest level (cf. Figure 3.3 in Section 3.1.1.9) it is possible to change the values of 
simple variables or a data structure. On the second level it is possible to exchange a 
component (i.e., part of the model content). On the third level it is possible to 
change the structure of a model or the connection/relations among components. 
The fourth level allows change in the functionality. The last two levels are related 
to changes in the organization of a compound model, changes in the paradigm or in 
the application concept. Closed systems cannot be changed, therefore, they are not 
as flexible as open systems. Both organization and granularity influence the 
flexibility of a sophisticated model. Conventional CAx-systems do not achieve 
optimal model organization, optimal model granularity, and optimal model 
integration. If we assume that, in general, the functionality of a software 
component is proportional to its “size”, Figure 4.11 may give us an impression 
about the functionality of different software components involved in the 
engineering processes. 

(2004)
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Figure 4.11. The size of an average model compared to the size of other software. The area 
of each rectangle is proportional to the average size of the respective software after 
Avgoustinov et al. Note that an area of the picture is zoomed. 

Figure 4.11 illustrates the huge disproportions of the mentioned software 
subsystems in size and, respectively, in functionality, but it still does not reveal that 
there seems to exist a kind of logarithmic relation between them. Another 
representation of the same data, illustrating this aspect, is given in Figure 4.12. 

Obviously, although the CAx-systems could benefit very much from separate 
modelling, they cannot apply it.  

4.6.7.2 Modelling for Reuse 
The possibility for reuse is one of the most important traits of any piece of 
software. Very often the advantages that can come from reuse are either 
underestimated or simply not known. Therefore, we shall discuss at least some of 
them. Consider the ratio between the time needed to create a given artefact and the 
time this artefact can be used: the lower the ratio is, the higher is the economical 
efficiency. Ideally, the creation of an artefact should be instantaneous and its use 
should be time unrestricted (i.e., infinite). In a real case the fastest method to create 
an artefact is to replicate it. The replication of material objects requires some 
effort, but this effort is much smaller than the effort for design, development and 
production taken together. The replication of software is almost as quick and 
effortless as in the ideal case, but the development of software is a long and 
expensive process. For this reason, it is very important to ensure high grade of 
reuse. And in the case of software artefacts (respectively, software models) two 
additional, software-specific methods for ensuring/supporting reusability exist: 
factoring out and parameterization. 

To factor out a piece of data or program code means to recognize a piece that 
tends to recur, to separate it as a module, to test it and to make it accessible to other 
pieces of code. The reusability of a piece of code becomes higher when it is 

 2007).(
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possible to make it usable not just for a specific task, but for a whole class of 
similar tasks, instead. This is achieved through parameterization. 

Some of the prerequisites for reusability were mentioned in 2.4.1.34 and Figure 
2.31. In the case of software models, there exist some additional factors (or 
modelling parameters) that can increase the reusability – similarization, 
intuitiveness, mnemonics, self-documentation/self-awareness. 

The similarization means that a newly created model resembles not only the 
outlook of the modellee, but also its behaviour and the way it interacts with the 
user and with the environment. For instance, if a model of a light switch is 
modelled, the change of its state (on/off) should be controlled not by means of a 
menu (unintuitive) but by touching it with either the mouse-pointer or with the 
hand of the user's avatar43. 

Achieving intuitiveness is extremely important for modelling, but very different 
in SCA and MCA. Working with a (unknown) CAx-system, one contemplates 
“how could I achieve this?”, and tries to guess in which menu the respective 
command is. Working with an unknown MCA-model of a known product or object 
the respective question is “how would I do the same with this model’s modellee?”. 
The authoring of intuitive models requires a respective convention and a more 
concentration on the modelling process. The easiest way to achieve this is to shift 
the focus from the authoring tool on the modelling itself. To make (a part of) a 
model intuitive means that its potential user would know how to deal with it even 
before/without reading the documentation. This is often easily achievable, but 
underestimated and neglected. The use of mnemonic techniques in the modelling 

                                                 
43 Avatar is used here with the meaning of (virtual) model of the user, representing him in a 

modelled world. 

Size [MB]

 

Figure 4.12. The size of an average model compared to the sizes of other software 
(logarithmic scale) 
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makes it easier to remember different attributes, traits or activities of a model or 
how to interact with it. 

Finally, the self-awareness and self-documentation facilitate the dealing with 
unknown models. Their importance is proportional to the functionality of the 
respective model and increase with its lifetime. And since the software does not 
age physically, we are pursuing long living models. Therefore, the best way to 
ensure their usability throughout their whole life is to incorporate their 
documentation into them. 

4.6.7.3 Extensibility 
In its easiest form, the extensibility can be viewed as a convention to develop the 
models in such a way that they can be extended in order to increase their 
adaptability on demand. This means that if (the sources of) the models are closed 
(unreadable, unchangeable, etc.) they should expose some mechanism for 
extension like interface description, documentation, etc. The MCA requires in 
explicit form clearly defined interfaces of all models and components and 
recommends embedding some form of documentation into the models and 
components themselves. 

4.6.7.4 Knowledge-based Distributed Decision Taking 
The incorporation of intelligence into software components and models offers huge 
potential for increasing the flexibility by enabling the autonomy of models on the 
middle levels in the model hierarchy, and integration of the functionality of models 
instead of integrating the models themselves. Avgoustinov and Bley (2006) argue 
that the main way to achieve intelligence is the incorporation of (event-driven) 
behaviour and (self-)knowledge. They affirm that intelligence can be built only 
upon (domain) knowledge, and adduce that this knowledge has to be incorporated 
into the models in a bottom-up manner for the following reasons: 

• knowledge builds upon information, and information is data in a context; 
• if we begin top-down, there exists only one term (single data?) and no 

context at the beginning; 
• therefore, the bottom-up method seems more natural and advantageous; 

• knowledge comes from humans' brains, but they express it word-by-word, 
from pieces to the whole, also meaning bottom-up; 

• knowledge acquisition and representation is a time and labour consuming 
process  reuse of even intermediate results makes sense; 

• it is easier to reuse smaller parts of a knowledge puzzle than to reuse the 
whole, especially if the whole is still not ready. 

Thus, on the basis of some basic knowledge an intelligent model: 
• allows the decision taking to move to a lower modelling (or engineering) 

level, where the complexity is lower; 
• allows decisions to be taken near to the cause/need for the decision or to 

pass it upward in the hierarchy when the locally available information is 
insufficient for a decision; 

• is self-aware and can answer questions concerning it (e.g., “what is your 
name”, “what are you capable of”, “are you free”, “do you have free 
resources”, “can you perform X”, etc.; 

• has the ratio of needed instructions to accomplished work tending to zero; 
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• can complete some simple self-maintenance activities; 
• is capable of learning; 
• can represent both static and dynamic data (i.e. product and process related). 

Therefore, MCA not only relies on use of knowledge and intelligence, but re-
commends incorporating them directly where they are needed. A simplified ver-
sion of the algorithm used to create intelligent models is presented in Figure 4.13. 

Observation and analysis

Recognition of recurring elements:
features, events, states and (re)actions

Giving appropriate names
to the recognized elements

Recognition of patterns of
recurring elements

Determining (sets of) elements
that can be factored out

Determining their attributes, possible states, 
events to react to and essence of the reactions

Defining the interfaces of their models

Implementation, testing

Use, reuse
 

Figure 4.13. The steps towards incorporation of intelligence into models, after Avgoustinov 
and Bley (2006) 
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It is important to note that when following this approach, sooner or later – 
depending on the model granularity (i.e., on the models' average size) – name 
collisions can occur. These are normal for bottom-up development and formally 
could be avoided with careful choice of all names and suitable application of 
namespaces. The real problem, though, is not how to avoid a name collision in the 
technical sense, but how to ensure that in a (future) world with unlimited number 
of models, exactly the desired model is unambiguously referred to. On the other 
hand, the opposite problem is also possible: to know that a model with the desired 
qualities exists, but to be unable to find it because its name is unknown. These two 
problems will receive a satisfactory solution only with the development of 
taxonomies and domain ontologies for the concerned domains. The introduction of 
domain ontologies would also improve the development of the user interfaces, as 
well as the human-to-human communication. 

With respect to globalization and the international cooperation we consider also 
very important the employment of thesauri. It would increase the comfort of use 
and the probabilities for finding the searched. According to our approach in 
Avgoustinov and Bley (2003) the intelligence is distributed within the process 
model (in our case, of assembly and assembly planning) across several hierarchy 
levels. The behaviour making the models appear intelligent is implemented on the 
lowest level with the help of features, patterns and procedures, integrated into 
autonomous intelligent entities (AIEs). On the upper levels the AIEs can be 
combined in more and more sophisticated models, up to distributed intelligent 
virtual enterprises. Very interesting possibilities are offered by the combined use of 
(assembly) patterns and (assembly) features – they have many similarities, but also 
many differences that can nicely complement each other. 

Summing up, with the concepts for separation of authoring from use, separate 
modelling, model organization according to Figure 4.6 and incorporation of 
intelligence, the MCA offers much higher flexibility of the prepared models. 

4.6.8 Cooperative Work and Distributed Authoring 

The separation of authoring from use, together with the separate modelling, create 
prerequisites for easier cooperation, since it makes no difference where the models 
are created. When the cooperating authors (or modellers) are distributed in 
different points of the world we can speak of distributed authoring. An illustration 
of how cooperation on the basis of distributed authoring can be organized is 
presented in Figure 4.14. Note the difference between Internet and (manufacturer's) 
intranet. The idea is that instead of using the conventional electronic catalogues it 
would be much more convenient if the manufacturers of different equipment – in 
this example workpieces, tools, machine tools, and fixtures – provide functional 
models of their products to be used for testing and planning of the future 
production. Of course, these models can involve some kind of protection against 
theft of intelectual properties  – e.g., authorisation of the use only after 
identification, or even for a small fee. Nevertheless, the possibility to experiment 
and play different scenarios with the whole equipment and prove that it is exactly 
what is needed can enormously improve the productivity, the economical 
efficiency and probably even the quality of the production yet during its planning. 
And such way of cooperation could provide for much earlier and more intensive 
feedback concerning the quality of the involved models and their respective 
modellees. 
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Figure 4.14. A scheme for cooperative work over Internet, advanced from Avgoustinov 
(1999) and Avgoustinov and Bley (2003) 

4.6.9 Lean Modelling 

As already mentioned in Section 4.6.1, MCA can be viewed as a new organisation 
of the modelling and the resulting models. This new organisation could play for the 
modelling the same role, which the concept of lean manufacturing, Womack and 
Jones (1994), lean thinking, Womack and Jones (2003) and lean solutions, 
Womack and Jones (2005) played during the last decades for the manufacturing: 
minimising the waste and increasing the efficiency. 

And if the approach is successful, it is not important, whether its name is lean 
modelling, model centred approach or something else; important is to make the 
next step on the way of continuous improvement. 

 

h
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4.7 Comparison of MCA and SCA 

A comparative assessment of the most important traits of the product and process 
models, developed by means of the two approaches, is presented in Table 4.6 and 
Table 4.8. The comparison is intended just to give some orientation and first 
impressions about the MCA. 

For SCA, the theoretical possibility for a certain parameter to be employed 
(either 0 or 100%) and an estimation of how many CAx-systems are making use of 
it really are given. The value 5% denotes that probably there is a CAx-system, 
which makes use of this parameter, but it is not known to us. 

Table 4.6. Modelling parameters (strategic and conceptual) in use by SCA and MCA (cf. 
Table 4.4, UL part). Parameters with the same use in both SCA and MCA are not shown. 

MCA

theoret. 
possible

in 
practice

theoret. 
possible

100% 5% 100% 1

0% 0% 100% 2

100% 30% 100% 3
100% 60% 100% 4

5% 100% 5
100% 5% 100% 6
100% 10% 100% 7
100% 80% 100% 8
100% 50% 100% 9
100% 80% 100% 10

0% 100% 11

100% 75% 100% 12

100% 10% 100% 13
100% 70% 100% 14

100% 50% 100% 15

100% 70% 100% 16
100% 90% 100% 17

100% 75% 100% 18

100% 5% 100% 19

SCA

use of patterns

ch
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 o

f a
pp

ro
pr
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te

 
au
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or

in
g 

to
ol

s

tool performance
quality of the delivered

models
tool lifetime

tool reliability
new versions backward

compatible

interoperability

low price of the tool

standardization

approp-
riate 

hosting

long living hosts
high performance

low price of the host
new versions backward

compatible

C
or

re
la

tio
n 

M
od

el
lin

g 
pa

ra
m

et
er

s
st

ra
te

gi
c 

&
 c

on
ce

pt
ua

l a
ct

iv
iti

es

separation of authoring from use
shifting the focus from use of tools
towards adequate models/results!

(modellee) interaction resemblance
parameterization

pursuing optimal granularity
platform-independent model design

integra-
bility

 

The column “in practice” is not given for MCA, because it is still in its 
introductory phase. Neither Table 4.6, nor Table 4.8, which is the continuation, can 
give a final, qualified answer to the question of which approach is better. What 
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they are giving you is a basis for comparison, showing which modelling 
parameters lead to differences when used/changed. 

Table 4.7. Modelling parameters (concerning organization and implementation) in use by 
SCA and MCA (cf. Table 4.4c and Table 4.4e). Parameters with the same use are not shown. 

 

MCA

theoret. 
possible

in 
practice

theoret. 
possible C
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la
tio

nSCA

clear 
interfaces 100% 5% 100% 20

libraries 100% 5% 100% 21
broker 100% 5% 100% 22

100% 5% 100% 23
100% 5% 100% 24
100% 5% 100% 25
100% 5% 100% 26

capability to 
answer

 predefined
 ques

-
tions

 about
 

itself 0% 100%

27

capability for 
self-

maintenance 0% 100%
28

capability to 
take 

decisions 0% 100%
29

capability for 
self-

improvement 0% 100%
30

0% 100% 31
100% 80% 100% 32
100% 70% 100% 33

100% 30% 100% 38

100% 5% 100% 39

0% 100% 40

0% 100% 41
100% 60% 100% 42
100% 40% 100% 43

low 45
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open
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g 
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m
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s
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n 

m
od
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iti

es object-
oriented allow user-defined types

employment of recursion
proper choice of the level of

standardization

user qualification high

inimization of the information content
mnemonics

factoring out reusable content

incorpo-
ration of

intelli-
gence

max. independence from the host
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These two tables could be used together with Table 4.4 for determining which 
customer demands would be influenced. An attempt to evaluate which of the two 
approaches is better suited to a particular situation can be carried out after 
introducing weight factors for the modelling factors or even better – for the 
(adapted to the specific situation and needs) functional requirements. We leave this 
task as an exercise to you – probably after considering the remainder of the book. 

 

4.7.1 Modelling Efficiency 

Since most systems have a hierarchical structure, the lower in the hierarchy we go 
the higher is the number of the components on the respective level and the lower is 
their complexity – cf. Equation 3.10 and Figure 3.16. Let us consider how this can 
influence the modelling efficiency. 

The efficiency of a process is usually defined as the ratio of its output to its 
input. The output of the modelling process is a model. Assuming that the 
requirements for the model define the modelling process, but do not belong to it, 
what remains on the input are the modelling techniques and tools. Therefore, the 
modelling efficiency for the creation of just one model can be expressed as 
follows: 

efficiencymodelling=
toolstechniques

ellmod

priceprice
value

+
 (4.1) 

According to this equation (which neglects the value of time savings) the 
efficiency would tend to infinity when the divisor tends to zero. Supposing that 
smaller and less complex models have lower value, it appears more efficient to use 
cheap tools and techniques for small models, and more expensive tools and 
techniques for larger, more complex models. The only fact that should not be 
disregarded is that the use of more than one tool for authoring can cause 
incompatibilities or problems during the integration of the separate models. 

Of course, no tool is used for only one model. To take this into consideration 
we should estimate how many models (denoted by N below) could be produced 
during the lifetime of the respective tool and what their value is. 

 

efficiencymodelling=
toolstechniques

N

i
ellmod

priceprice

value
i

+

∑
=1  

(4.2) 

If we assume that the frequency of the need to edit (i.e., create or modify) a 
component (without its sub-components!) does not depend on its size, and that 
each modification is performed within a CAx-system, it follows that each system 
will be used more frequently to modify small components than large ones. 

4.7.2 Systems for Modelling (Authoring Tools) vs. (Systems of) Models 

In Table 4.8 is presented a short comparison between the systems for modelling 
and groups of models, integrated into systems. 
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Table 4.8. Systems for modelling vs. systems of models: a short comparison 

Trait Systems for modelling Systems of models 

Aim To satisfy the needs within 
a given domain (abstract 
aim!); needs are 
permanently growing. 
Moreover, to be flexible the 
systems have to posses 
reserve functionality  
another cause for growing. 

Each model should be, by 
definition, adequate but 
still finite representation of 
the modellee 
(concrete/tangible aim). A 
system of models is a 
(finite) number of models. 

Aim abstractness abstract/fuzzy  more 
difficult to pursue. 

concrete/tangible  much 
easier to pursue. 

New version shows how far from perfect 
the system is. 

brings the model towards 
its aim by making model-
based decisions as sensible 
as the modellee-based. 

Growing every system tends to get 
more and more 
functionality and nothing 
stops it from growing 
infinitely. 

Models must remain finite 
(according to their 
definition!); the size of 
compound models (systems 
of models) can be huge, but 
it still remains a sum of 
finite number of 
components, each of finite 
size. 

 
From Table 4.8 it follows that when (CAx)systems are used as both tools for 
modelling and hosts for the created models, they have a much smaller chance of 
becoming perfect than systems of models hosted independently on lean hosts. 
Consequently, it is better to focus on the development of the models themselves, 
which is one of the main ideas of MCA. 
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5 Conclusion 

Conclusion 

A new scientific truth does not triumph by 
convincing opponents and making them see the 
light, but rather because its opponents 
eventually die, and a new generation grows up 
that is familiar with it. 

Max Planck 
A scientific Autobiography and Other Papers, 1949 

Whenever science makes a discovery, the devil 
grabs it while the angels are debating the best 
way to use it. 

Alan Valentine 

The way to achieving The Perfect Modelling approach can be very long, even 
endless. But as the saying puts it, even the longest way starts with the first step. 
The Model Centred Approach described in the previous chapter is an attempt not 
only to make the first step on this way, but also to achieve some advancement 
towards a better – and simultaneously towards The Perfect – modelling approach. 

5.1 Based on Highly and Easily Integrable AIEs 

One of the main problems of SCA – the integration of model components created 
in different CAx-systems – is solved in MCA by unique shifting of the integration 
paradigm. In contrast to SCA, which relies on integration of the component 
themselves, or even worse – on integration of the authoring tools to achieve simply 
integration of the model components – MCA relies on integration of the 
component's functionality, accomplished by means of cooperative work and 
communication (for details on different types of integration we refer to Section 
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3.1.3 above). This concept for integration resembles very much how humans 
cooperate to integrate their efforts and is based on three pillars: design for 
integration, componentization and proper choice of the level of standardization. 

Alternatively, backed by Knowledge-based Adaptive Conversion proposed in 
Avgoustinov (1997) it can support hierarchically-distributed (i.e., separately 
implemented for each model or component and not as a standalone converter) 
offline and online exchange and thus allow the adoption and reuse of models, 
created by means of distinct CAx-systems. 

5.2 Extremely Flexible and Extendable 

Due to its open organization and architecture, the flexibility of MCA remains high 
even when the model components are not open themselves. The organization, 
having no fixed structure and based on components with clearly defined interfaces, 
enables easy exchange of separate components, changes in the interaction of the 
model components, exclusion of unneeded or inclusion of additional models. This 
allows even benchmarking of components with the same purpose and interfaces, 
but from different producers, and to choose/buy the one, which is best suited to the 
respective purpose. 

The proposed incorporation of intelligence in components at the middle and 
upper levels of the model hierarchy (AIEs, AIMs, etc.; Figure 4.6) increases the 
flexibility and efficiency even more, unburdening in addition both model authors 
and model users from the frequent need to make routine decisions, calculations or 
other recurring routine activities. 

The high flexibility and extendibility make MCA universal and useable in a 
number of application areas. Combined with its efficiency, this makes it well-
suited also to small and medium-sized enterprises. 

5.3 Network and Web-ready Capabilities 

Another advantage of MCA is its readiness for use over networks, and possibilities 
to support distributed cooperative work. There are two aspects here. On the one 
hand, humans are supported in their cooperation according to at least the following 
combinations: 

• author to author: for cooperative development; 
• author to user: for teaching and training; 
• user to user: for exchanging experience or cooperative work/use; and  
• user to author: for feedback, request of new models/functions or other 

customer support. 
On the other hand, it is possible to compose sophisticated models, whose 

components are distributed in diverse geographical locations but can be used over 
the network just as easly and conveniently as the local use of any software system 
would be. 
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5.4 Scalability up to and Beyond Distributed Virtual 
Enterprises 

The open organization and the easy integration and flexibility offered by MCA, 
satisfy the prerequisites for achieving arbitrary scalability of the models. Their 
network-readiness, in addition, provides a way to scale their performance by 
distribution of the model parts and the diverse calculations on different computers 
and other hardware resources. 

5.5 Advantages for Modelling 

Summing up, compared to SCA the MCA offers plenty of advantages – among 
them higher intuitiveness and ease of use, low (accidental) complexity, leading to 
increased efficiency of the modelling, high flexibility, interchangeability and 
extendibility of the sub-models, low costs for development, use and maintenance 
and reduced volumes of information flow. All these taken together lead to higher 
reusability, and eventually to higher economic efficiency. 
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6 Perspectives 

Perspectives 

Science is always wrong. It never solves a 
problem without creating ten more. 

George Bernard Shaw 

Exactly as George Bernard Shaw puts it, the MCA does not only offer a solution, it 
raises also questions and creates some problems. One of the weak points is that the 
increasing number of components in a model leads to more effort on management 
and organization. Typically this can be solved through proper encapsulation, but 
maybe not always. On the other hand, the product data management (PDM) 
systems and the product lifecycle management (PLM) systems can do a great job 
here, but what they cannot do is the integration of the separate components – 
unless these model components possess enough intelligence to either integrate 
themselves alone, or support the PDM/PLM system in this activity. 

For the evaluation of MCA in more detail, a library of prototype AIEs, AIMs 
and parameterized models of numerous representative standard parts and 
manufacturing tools was prepared. This library was successfully used for the 
modelling of different products and processes in engineering areas like assembly, 
presented in Bley et al. (2002), Avgoustinov et al. (2006), Avgoustinov and Bley 
(2006 ) and Bley et al. (2006); machining simulation, presented in (Avgoustinov 
(2000a), Avgoustinov (1999), Avgoustinov (2000a); Avgoustinov and Bley (2000) 
and Avgoustinov (2000b); education, presented in Avgoustinov (2000b); layout 
planning and others, presented in Avgoustinov and Bley (2003), Avgoustinov and 
Bley (2004) and Avgoustinov and Bley (2005). The overall impression from the 
testing conducted on this early stage of development is that the MCA performs 
remarkably well and according to expectations. The proposed method for model 
integration reduces the interface pressure and establishes good prerequisites not 
only for data exchange and data sharing, but also for online model integration in 
real time. The flexibility, extendibility and ease of use of the AIEs and AIMs – 
even over Internet very attractive are. But one of the most important MCA features 
is without doubt the change in the way of thinking, revealing a completely novel 
perspectives and leading also to a change in the modelling workflow as 
symbolically represented in Figure 6.1. 
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The price of any MCA-component is expected to be incomparably lower than 
that of any CAx-system. It is highly probable that even the total price of the most 
complicated model, prepared using MCA and including the prices of all necessary 
AIEs, AIMs, standardized parts models, hosts and other components, will be lower 
than the price of an average CAx-system. At first glance, this seems not very 
attractive to CAx-systems producers, because it seems easier to make revenue with 
big, expensive systems and the support for them, than with small components and 
their support. But this situation resembles the situation in the computer market at 
the time of the appearance of the first personal computers: initially many producers 
of mainframe computers could not see a benefit in selling cheap PCs. Later on, it 
turned out that these much smaller and cheaper computers are affordable for much 
higher numbers of customers – including private persons – and they conquered the 
market. Since the lower price has led to a high number of PCs sold and their 
lifespan is shorter than that of the mainframes, the number of PCs produced 
continues to increase. Without this still continuing increase we would not have the 

Modellers

  End Users

Users Users

Models

 

Figure 6.1. The Modelling Wheel: a schematic representation of the workflow in the Model 
Centred Approach 
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achievements made by computer science during recent decades, which many 
experts call “revolutionary”. And nowadays the revenues from sales of personal 
computers, software for them and consulting related to them is considerable. 
Analogously, the intensive use of autonomous and intelligent models could be 
revolutionary for modelling in a similar way and can be useful both for its users 
and for the carriers of know-how about it. 

We expect that the core features of MCA like flexibility, portability, 
connectivity, autonomy, web-readiness, easy maintenance and low price will make 
it popular among end users if a software company takes over the technology and its 
support and further development. Similarly to PCs, which are capable of 
accomplishing many tasks alone but for other tasks just complement the 
mainframes and supercomputers, the MCA-components will be able to accomplish 
numerous tasks alone and for others, will complement different CAx-systems. 
Although the final proportion between MCA and SCA is still an open question, we 
have no doubt that – in one or other form of implementation – the MCA will 
establish itself as a reasonable and efficient complement and enhancement of the 
SCA. 
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7 Afterword 

Afterword 

The scientist is not a person who gives the right 
answers, he's the one who asks the right 
questions. 

Claude Lévi-Strauss 
Le Cru et le cuit, 1964 

Probably not every explanation in this book was absolutely clear. It is even 
possible that not everything is absolutely correct – at least from the viewpoint of 
your (the reader's) specific background and qualification. Nevertheless, I would 
like to hope that you have liked at least some ideas, or that you at least do not 
disagree with everything. 

Anyway, since you are reading this, you should have at least some experience 
with some CAx-system, I guess. Therefore, independently from the fact whether I 
did gave any answers to any of the questions that have bothered you, let me finish 
in the sense of Claude Lévi-Strauss (cf. the motto) and finish this book with a few 
questions: 

1. Do you still believe that the time of computer integrated systems (CIM) in 
the sense of integrated systems for authoring, will ever come? 

2. Do you still prefer to use models within their huge, expensive and 
complex authoring tools, or would a simple host suffice? 

3. Do you prefer to focus your effort and resources on the (authoring) tools 
instead of on the problems you have to solve? 

4. Do you think that the System Centred Approach in its current state will 
still be The Approach of the twenty-xth century? 

If your answer to at least one of these questions is yes, I would be glad and 
grateful to hear from you. 
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Glossary and Used Abbreviations 

AIE Autonomous Intelligent Entity 
AIM Autonomous Intelligent Model 
AIS Autonomous Intelligent System 
API Application Programming Interface 
BIOS Basic Input-Output System 
CAD Computer Aided Design 
CAE Computer Aided Engineering 
CAM Computer Aided Manufacturing 
CAP Computer Aided Planning 
CAPP Computer Automated Process Planning 
CATIA Computer Aided Three-dimensional Interactive Application 
CAx Computer Aided … 
CIM Computer Integrated Manufacturing 
CMM Coordinate Measuring Machine 
CNC Computer Numerical Control 
CORBA Common Object Request Broker Architecture 
CWM Common Warehouse Metamodel 
DCOM Distributed Component Object Model 
DIS Distributed Intelligent System 
DMU Digital Mock-up 
EAI Enterprise Application Integration 
ENX European Network Exchange 
HLA High Level Architecture 
EDM Engineering Data Management 
FEM Finite Element Method 
FMS Flexible Manufacturing System 
GIS Giant Scale Integration 
HMS Holonic Manufacturing System 
IC Integrated Circuit 
iViP Integrated Virtual Product Creation 
LOD Level of Detail 
MCA Model Centred Approach  
MDA Model Driven Architecture  
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MEM Mechanical Engineering and Mechatronics 
MIS Management Information System 
MOF Meta Object Facility 
MOM Message-Oriented Middleware 
NC Numerical Control NC  
OEM Original Equipment Manufacturer 
OOP Object-Oriented Programming; Object-Oriented Paradigm 
OOT Object-Oriented Technology 
OS Operating System 
OSI Open Systems Interconnection 
OMG Object Management Group 
ORB Object Request Broker 
PDM Product Data Management 
PDML Product Data Markup Language 
PDGL Part Design Graph Language 
PLM Product Lifecycle Management 
RFID Radio-frequency identification; Radio Frequency Identifying Device 
SCA System Centred Approach  
SLS Selective Laser Sintering 
SME Small And Medium-Sized Enterprise 
STEP Standard for Exchange of Product Data 
UML Unified Modelling Language 
VAT Value-Added Tax 
VLSI Very Large-Scale Integration 
XMI XML Metadata Interchange 
XML Extensible Markup Language 

 

 



www.manaraa.com

 

    

 

Bibliography 

"ANIKA" (1998): Further information about ANICA, ProDMU, the CAx object 
bus and CAx components. http://rkk.mv.uni-
kl.de/ComponentCAx/ComponentCAx_engl.html, Last visited: 2002 

Abramovici, M., Gerhard, D. and Langenberg, L. (1998): Supporting Distributed 
Product Development Processes with PDM. In: Proceedings of New Tools and 
Workflows for Product Development - CIRP Seminar STC Design, May 1998, 
pp. 1–11, Fraunhofer IRB, Berlin 

Arnold, F., Janocha, A. T. and Swienczek, B. (1999): Rendezvous der Monolithen: 
Integration heterogener CAx-Systeme. OBJEKTspektrum, Vol. 6, pp. 22–27 

Avgoustinov, N. (1997): Minimizing the Labour for Exchange of Product 
Definition Data Among N CAx-Systems. Saarland University, Saarbrücken 

Avgoustinov, N. (1999): Virtual Shaping and Virtual Verification of NC-Programs. 
CIRP - Journal of Manufacturing Systems, Vol. 29, No. 4/99, pp. 287–292 

Avgoustinov, N. (2000a): Implementation of four-dimensional machining 
simulation in virtual reality over Internet. In: McGeough, J. A. (Ed. Computer-
Aided Production Engineering, pp. 105–113, Professional Engineering 
Publishing, London 

Avgoustinov, N. (2000b): VRML as means of expressive 4D illustration in CAM 
education. Future Generation Computer Systems, 17, pp. 39–48 

Avgoustinov, N. (2002): Product and Process Modelling: System-centred vs. 
Model-centred Approach. In: Proceedings of 35th CIRP International Seminar 
on Manufacturing Systems, 13–15 May, Seoul 

Avgoustinov, N. (2004): Product and Process Modelling: System-centred vs. 
Model-centred Approach. CIRP - Journal of Manufacturing Systems, Vol. 33, 
5, pp. 437–444 

Avgoustinov, N. and Bley, H. (2000): Method for reduction of machining time by 
the simulation of NC-Programs in virtual reality. In: McGeough, J. A. (Ed. 
Computer-Aided Production Engineering, pp. 123–129, Professional 
Engineering Publishing, London 

Avgoustinov, N. and Bley, H. (2003): Distributed Virtual Enterprises (DVE) in 
Modelling, Simulation and Planning. In: Proceedings of Progress in Virtual 



www.manaraa.com

212 Bibliography 

    

Manufacturing Systems, 3–5 June, pp. 123–129, Saarland University, 
Saarbrücken 

Avgoustinov, N. and Bley, H. (2004): Web-based Process Modelling for the 
Digital Factory. CIRP - Journal of Manufacturing Systems, Vol. 33, 1, pp. 77–
82 

Avgoustinov, N. and Bley, H. (2005): Towards Integration by Design. In: 
Proceedings of International PACE Forum Digital Manufacturing, Partners for 
the Advancement of Collaborative Engineering Education (PACE), Darmstadt 

Avgoustinov, N. and Bley, H. (2006): Incorporation of Computational Intelligence 
into Assembly Planning Software. In: Proceedings of Intelligent Computation 
in Manufacturing Engineering, 25–28 Juli, pp. 497–502, University of Naples 
Federico II, Ischia (Naples) 

Avgoustinov, N., Bley, H. and Weyand, L. (2007): Influence of the Software 
Models’ Intelligence on their Flexibility, Reconfigurability and Agility. In: 
Proceedings of International Conference on Changeable, Agile, Reconfigurable 
and Virtual Production, 22–24 July, Toronto 

Avgoustinov, N., Bossmann, M. and Bley, H. (2006): Supporting the Assembly 
Planning by Means of Features and their Influence on the Development 
Process. CIRP - Journal of Manufacturing Systems, Vol. 35, No 3, pp. 257–266 

BEA Systems, I. (2004): BEA WebLogic Rapid Business Integration. 
http://www.bea.com/content/news_events/white_papers/BEA_WL_Integration
_ds.pdf, Last visited: 2006 

Black, P. E. (2005): Dictionary of Algorithms and Data Structures at the National 
Institute of Standards and Technology (NIST). http://www.nist.gov/dads/, Last 
visited: 2005, National Institute of Standards and Technology (NIST) 

Bley, H., Avgoustinov, N. and Franke, C. (2002): Towards Feature-based 
Intelligent Assembly. Annals of the German Academic Society for Production 
Engineering, Vol. IX, 1, pp. 97–100 

Bley, H., Avgoustinov, N. and Zenner, C. (2006): Assembly Operation Planning by 
Using Assembly Features. In: Westkämper, E. (Ed. First CIRP International 
Seminar on Assembly Systems, pp. 115–121, University of Stuttgart, Stuttgart 

Bley, H. and Franke, C. (2001): Integrating Product Model and Production Model 
in the Digital Factory. wt Werkstattstechnik, Vol. 91 h4, pp. 214–220 

Bochmann, O., Brussel, H. V. and Valckenaers, P. (2003): Micro and MacroLevel 
Interactions in MultiAgent Manufacturing Systems. Saarland University, 
Saarbrücken 

Bollinger, J. G. (Ed.) (1998): Visionary Manufacturing Challenges for 2020. 
National Academy Press, Washington 

Booch, G., Rumbaugh, J. and Jacobson, I. (1999): The Unified Modeling Language 
User Guide. 6 edn, Addison Wesley Longman Inc., Reading 

Brooks Jr., F. P. (1987): No Silver Bullet: Essence and Accidents of Software 
Engineering. Computer, April 

Bullinger, H.-J. (Ed.) (2007): Technologieführer. Springer, Berlin Heidelberg 
Burkett, W. C. (1998): PDML: Product Data Markup Language - A New Paradigm 

for Product Data Exchange and Integration. http://www.pdml.org/whitepap.pdf, 
Last visited: 2002 



www.manaraa.com

Bibliography 213 

    

Ciupke, O. and Schmidt, R. (1996): Components as Context-Independent Units of 
Software. In: Proceedings of Special Issues in Object-Oriented Programming. 
Workshop Reader of the 10th European Conference on Object-Oriented 
Programming ECOOP, Juli 1996, Linz 

Dankwort, C. W. (1997): CAx System Architecture of the Future. In: Roller, D. 
and Brunet, P. (Eds) CAD Systems Development, Tools and Methods, pp. 20–31 

Dörner, D. (1987): Problemlösen als Informationsverarbeitung. 3. edn, 
Kohlhammer, Stuttgart 

Duffy, A. H. B. and Andreasen, M. M. (1995): Enhancing the Evolution of Design 
Science. In: Hubka, V. (Ed. International Conference on Engineering Design 
(ICED), pp. 29–35, Heurista, Praga 

Edmonds, B. (1999a): Syntactic Measures of Complexity (Thesis). University of 
Manchester, Manchester 

Edmonds, B. (1999b): What is Complexity? - The philosophy of complexity per se 
with application to some examples in evolution. In: Heylighen, F. and Aerts, D. 
(Eds) The Evolution of Complexity, Kluwer, Dordrecht 

European Union, C. o. t. (2003): COMMISSION RECOMMENDATION of 6 May 
2003 concerning the definition of micro, small and medium-sized enterprises. 
Official Journal of the European Union, Vol. 46, L 124/36, pp. 36–41 

Fagade, A., Kazmer, D. and Kapoor, D. (1998): A Discussion of Design and 
Manufacturing Complexity. 
http://http://kazmer.uml.edu/Staff/Archive/XXXX_Design_Manufacturing_Co
mplexity.pdf, Last visited: 2005 

Fischer, K., Schillo, M. and Siekmann, J. (2003): Holonic Multiagent Systems: A 
Foundation for the Organisation of Multiagent Systems. In: Marík, V., 
McFarlane, D. C. and Valckenaers, P. (Eds) First International Conference on 
Applications of Holonic and Multiagent Systems (HoloMAS'03), pp. 81–90, 
Springer, Prague 

Frankel, D. S. (2001): Model-Driven ArchitectureTM Reality and Implementation. 
http://www.IONA.com, Last visited: 2004, IONA Technologies, Inc. 

Franklin, S. and Graesser, A. (1997): Is it an Agent, or just a Program?: A 
Taxonomy for Autonomous Agents. In: Proceedings of Third International 
Workshop on Agent Theories, Architectures, and Languages, pp. 21–35, 
Springer 

Frizelle, G. and Suhov, Y. M. (2000): An entropic measurement of queueing 
behaviour in a class of manufacturing operations. In: Proceedings of 
Proceedings of the Royal Society, pp. 1579–1601, The Royal Society, London 

Gausemeier, J., Hahn, A. and Schneider, W. (1996): Kooperatives Modellieren auf 
Basis transienter Objekte. In: Proceedings of Fachtagung der Gesellschaft für 
Informatik, 7–8 March 1996, pp. 311–325, Ruland, Bonn 

Gausemeier, J., Lindemann, U., Reinhart, G. and Wiendahl, H.-P. (2000): 
Kooperatives Produktengineering. Ein neues Selbstverstandnis des 
ingenieurmäßigen Wirkens., Heinz Nixdorf Institut, Universität Paderborn, 
Paderborn 

Gausemeier, J. and Lückel, J. (2000): Entwicklungsumgebungen Mechatronik - 
Methoden und Werkzeuge zur Entwicklung mechatronischer Systeme. Heinz 
Nixdorf Institut, Universität Paderborn, Paderborn 



www.manaraa.com

214 Bibliography 

    

Goldberg, D. (1991): What Every Computer Scientist Should Know About 
Floating-Point Arithmetic. Computing Surveys, March 

Goldreich, O. (2000): Computational Complexity. http://wisdom.weizmann.ac.il, 
Last visited: 2005, Weizmann Institute of Science 

Goltz, M. (2000): Product Data Controlled Engineering Workflow in the Supply 
Chain. In: Proceedings of ProSTEP Science Days, 13–14 September, Stuttgart 

Grünwald, P. D. and Vitányi, P. M. B. (2003): Kolmogorov Complexity and 
Information Theory. Journal of Logic, Language and Information, 12, pp. 497–
529 

Günterberg, B. and Kayser, G. (2004): SMEs in Germany: Facts and Figures 
(Report). Institut für Mittelstandsforschung Bonn, Bonn 

Håstad, J. (1999): Complexity Theory (Unpublished Work). Royal Institute of 
Technology, Stockholm 

Howe, D. (2006): The Free On-line Dictionary of Computing (FOLDOC). 
http://www.foldoc.org/, Last visited: 2006 

IEEE (1991): IEEE Standard Computer Dictionary: A Compilation of IEEE 
Standard Computer Glossaries. Institute of Electrical and Electronics 
Engineers, New York 

Janocha, A. T. and Gandyra, M. (1997): Richtungsweisender Einsatz der 
Komponententechnologie für CAx-Systeme. In: Proceedings of VDI-Tagung 
"Neue Generation von CAD/CAM-Systemen: erfüllte und enttäuschte 
Erwartungen", 28–29 October, München 

Jeckle, M. (1999): Modellaustausch mit dem OMG XML Metadata Interchange 
Format (XMI). In: Proceedings of International Knowlege Technology Forum 
'99, 16–18 September, Potsdam 

Jesko, D. and Endig, M. (2000): Integration von Prozeßmodellierungsmethoden im 
Rahmen einer Prozeßzentrierten Entwurfsumgebung. In: Proceedings of 
Komponentenorientierte betriebliche Anwendungssysteme, Wien 

Kilb, T. and Arnold, F. (1998): Data Management in Distributed CAx Systems. In: 
Proceedings of ProSTEP Science Days '98: Product Data Technology - Facing 
the Future, Wuppertal 

Kotonya, G. and Sommerville, I. (1998): Requirements Engineering: Processes 
and Techniques. John Wiley & Sons, Chichester 

Krause, F.-L., Kramer, S. and Rieger, E. (1991): PDGL: A Language for Efficient 
Feature-Based Product Gestaltung. Annals of the CIRP, Vol. 40, 1, pp. 135–138 

Krause, F.-L., Tang, T. and Ahle, U. (2002): integrierte Virtuelle 
Produktentstehung Abschlussbericht. Fraunhofer IRB, Stuttgart 

Lee, J. Y. (2001): Shape Representation and Interoperability for Virtual 
Prototyping in a Distributed Design Environment (Generic). Springer, London 

Lutters, E. (2001): Manufacturing integration based on information management. 
University of Twente, Enschede 

Nyhuis, P. and Wiendahl, H.-P. (2004): 3-Sigma PPC – A Holistic Approach for 
Managing the Logistic Performance of Production Systems. In: Alting, L., 
Bramley, A., Brinksmeier, E., Corbett, J., Dini, G., Kruth, J. P., Lucca, D. A., 
Monostori, L., Tichkiewitch, S., Ueda, K., Houten, F. v. and Weinmann, K. 
(Eds) CIRP ANNALS 2004, pp. 371–376, Technische Rundschau, Paris 



www.manaraa.com

Bibliography 215 

    

OMG (1998): Object Management Group. The Common Object Request Broker: 
Architecture and Specification (Generic).  

Pahl, G. and Beitz, W. (1993): Konstruktionslehre: Methoden und Anwendung. 3. 
edn, Springer, Berlin Heidelberg 

Poole, J. D. (2001): Model-Driven Architecture: Vision, Standards And Emerging 
Technologies. Last visited: 2004, Hyperion Solutions Corporation 

Poppendieck (2004): Component-Based Software Development. 
http://www.poppendieck.com/components.htm, Last visited: 2006 

Rosenhead, J. (1998): Complexity Theory and Management Practice. http://human-
nature.com/science-as-culture/rosenhead.html, Last visited: 2005 

Sachers, M. (2001): White Paper for PDM-Integration of OEM and Supplier in the 
Automotive Industry. http://www.pdtnet.org/file/10918.wp_v_1_4.pdf, Last 
visited: 2005 

Sametinger, J. (1997): Software Engineering with Reusable Components. Springer, 
Berlin-Heidelberg 

Shannon, C. E. (1948): The mathematical theory of communication. Bell System 
Technical Journal, 27, pp. 379–423, 623–656 

Siegel, J. (2000): CORBA 3 Fundamentals and Programming. 2nd edn, Wiley, 
New York 

Sinclair, J., Hanks, P., Fox, G., Moon, R. and Stock, P. (Eds) (1987): Collins 
COBUILD English language dictionary. 1987 edn, William Collins Sons & Co 
Ltd, Glasgow 

Soley, R. M. (2002): Model Driven Architecture: An Introduction. 
http://www.omg.org/mda/mda_files/Soley-MDA/MDA-Seminar-Soley.htm, 
Last visited: 2006, Object Management Group 

Soley, R. M. (2005): Model Driven Architecture: Next Steps (Keynote lecture). In: 
Chen, C.-S., Filipe, J., Seruca, I. and Cordeiro, J. (Eds) Proceedings of 
International Conference on Enterprise Information Systems, Miami 

Sowa, J. F. (2000): Knowledge Representation: Logical, Philosophical and 
Computational Foundations. Brooks/Cole, Pacific Grove 

Sowa, J. F. (2001): Mathematical Background. 
http://www.jfsowa.com/logic/math.htm, Last visited: 2005 

Sowa, J. F. (2004): The Law of Standards. 
http://www.jfsowa.com/computer/standard.htm, Last visited: 2006 

Spur, G. and Krause, F.-L. (1997): Das virtuelle Produkt: Management der CAD-
Technik. Hanser, München; Wien 

Stachowiak, H. (1973): Allgemeine Modelltheorie. Springer, Wien 
Stal, M. (1997): Componentware – von der Komponente zur Applikation. 

OBJEKTspektrum, 3, pp. 86–89 
Starzyk, D. (2002): Review of Boeing Business Strategies and Requirements for 

OMG/STEP Harmonization Workshop. In: Proceedings of OMG/STEP 
Harmonization Workshop 

Starzyk, D., Price, D. and Johnson, L. (1999): STEP and OMG Product Data 
Management Specifications: A Guide for Decision Makers. 
http://www.omg.org/cgi-bin/doc?mfg/1999-10-04, Last visited: 2005 

Suh, N. P. (2001): Axiomatic Design: Advances and Applications. Oxford 
University Press, New York - Oxford 



www.manaraa.com

216 Bibliography 

    

Turing, A. M. (1950): Computing machinery and intelligence. Mind, 59, pp. 433–
460 

VDI-Richtlinien (1993): VDI-Richtlinie 2221: Methodik zum Entwickeln und 
Konstruieren technischer Systeme und Produkte (Generic). Mai 1993 edn, VDI-
Gesellschaft Entwicklung Konstruktion Vertrieb, Düsseldorf 

VDI-Richtlinien (2000): VDI-Richtlinie 3633: Simulation of systems in materials 
handling, logistics and production - Integration of simulation into operational 
processes (Generic). VDI-Gesellschaft Fördertechnik Materialfluss Logistik 

Warnecke, H.-J. (1996): Die Fraktale Fabrik - Revolution der 
Unternehmenskultur. 2. edn, Springer, Berlin-Heidelberg 

Weber, C. (2005a): CPM/PDD – An Extended Theoretical Approach to Modelling 
Products and Product Development Processes. In: Proceedings of 2nd German-
Israeli Symposium on Advances in Methods and Systems for Development of 
Products and Processes, 7–8 July, Fraunhofer IRB, TU Berlin/Fraunhofer-
Institut für Produktionsanlagen und Konstruktionstechnik (IPK) 

Weber, C. (2005b): CPM/PDD – An Extended Theoretical Approach to Modelling 
Products and Product Development Processes. In: Proceedings of 3rd 
International PhD Conference on Mechanical Engineering — PhD2005, 7–8 
July, University of West Bohemia, Faculty of Mechanical Engineering, 
Department of Machine Design, Pilsen 

Weber, C. (2005c): What is "Complexity"? In: Proceedings of International 
Conference on Engineering Design, Melbourne 

Weber, C., Werner, H. and Deubel, T. (2003): A different view on Product Data 
Management/Product Life-Cycle Management and its future potentials. Journal 
of Engineering Design, Vol. 14, 4, pp. 447–464 

Westkämper, E. (2000): Life Cycle Management and Assessment: Approaches and 
Visions Towards Sustainable Manufacturing. Annals of the CIRP, Vol. 49/2, 
pp. 501–522 

Wiendahl, H.-P. (2002): Wandlungsfähigkeit - Schlüsselbegriff der 
zukunftsfähigen Fabrik. wt werkstattstechnik online, 04, pp. 122–129 

Wiendahl, H.-P. and Heger, C. L. (2003): Justifying changeability: a methodical 
approach to achieving cost effectiveness. In: Proceedings of CIRP 2nd 
International Conference on Reconfigurable Manufacturing, August 2003, 
Michigan 

Wiendahl, H.-P. and Heger, C. L. (2004): 37th CIRP international seminar on 
manufacturing systems: digital enterprises, production networks. In: 
Proceedings of CIRP International Seminar on Manufacturing Systems, pp. 1–
9, Computer and Automation Research Institute, Hungarian Academy of 
Sciences, Budapest 

Wiki (2006): Wikipedia. http://en.wikipedia.org, Last visited: 2006 
Womack, J. P. and Jones, D. T. (1994): Die zweite Revolution in der Autoindustrie 

Konsequenzen aus der weltweiten Studie aus dem Massachusetts Institute of 
Technology. 8., durchges. Aufl. edn, Campus-Verl., Frankfurt/Main 

Womack, J. P. and Jones, D. T. (2003): Lean thinking banish waste and create 
wealth in your corporation ; revised and updated James P. Womack. 1st Free 
Press , rev. and updated edn, Free Press, New York 



www.manaraa.com

Bibliography 217 

    

Womack, J. P. and Jones, D. T. (2005): Lean solutions: how companies and 
customers can create value and wealth together. Free Press, New York 

Woolfson, M. M. and Pert, G. J. (1999): An Introduction to Computer Simulation. 
Oxford University Press, Oxford 

 
 
 



www.manaraa.com

 

    

  

Index 

:Model centred approach, 167, 174, 176, 
177, 178, 179, 180, 181, 185, 187, 
188, 190, 191, 192, 193, 195, 196, 
198, 199, 200, 201, 203, 204, 205 

Accuracy, 13, 40, 41, 103, 118 
Activity 

essential activity, 13 
Actuality, 40, 52 
Adequacy, 13, 41, 71, 103, 153, 154, 

157, 159 
Agent, 38, 162, 163, 183, 184 
Agile, 152, 162 
Agility, 87, 88 
Algorithm, 57, 66, 73, 96, 160, 180, 192 
Analysis, 4, 13, 19, 21, 50, 69, 77, 79, 

84, 90, 105, 106, 108, 109, 114, 131, 
136, 142, 144, 152, 154, 187, 188 

Application, 21, 24, 38, 42, 43, 50, 62, 
63, 74, 75, 76, 81, 82, 85, 88, 92, 105, 
130, 142, 144, 145, 148, 156, 159, 
160, 161, 167, 176, 177, 188, 193, 
200 

Archetype, 30, 31, 49, 117 
Architecture, 38, 50, 52, 56, 57, 75, 85, 

93, 94, 155, 160, 161, 162, 163, 174, 
179, 180, 200 
client–server architecture, 38, 159 
model-driven architecture, 174 

Aspect, 5, 13, 40, 41, 42, 48, 54, 55, 57, 
68, 72, 84, 88, 89, 97, 98, 99, 110, 
111, 112, 113, 114, 116, 117, 119, 
120, 121, 122, 126, 128, 131, 133, 
134, 135, 141, 142, 143, 145, 148, 

149, 157, 166, 167, 179, 183, 184, 
187, 189, 200 

Aspect-specific, 55, 141 
Assembly, 38, 64, 86, 114, 135, 162, 

177, 180, 193, 203 
Attribute, 7, 10, 11, 33, 40, 45, 46, 49, 

50, 54, 55, 58, 64, 65, 78, 87, 101, 
102, 103, 113, 120, 153, 154, 157, 
162, 163, 165, 179, 191 
holonic attribute, 162 

Attribute-value pair, 58 
Authoring, 126, 152, 156, 162, 165, 167, 

174, 175, 176, 178, 179, 185, 187, 
190, 193, 197, 199, 207 

Automation, 1, 20, 76, 143, 158 
Autonomy, 41, 48, 64, 80, 146, 162, 176, 

183, 191, 205 
Auxiliary activity, 13 
Auxiliary function, 45, 135 
Axiomatic, 152, 153, 154, 166 
Basic knowledge, 18, 191 
Behaviour, 3, 11, 21, 27, 28, 37, 43, 52, 

60, 61, 79, 157, 165, 179, 183, 184, 
190, 191, 193 

Boring, 95 
CAD, 68, 145 
CAM, 68 
Cardinality, 41, 42, 44, 45, 46, 69, 114 
CATIA, 148 
Ceramic, 3 
Cessation, 124 
Changeability, 42, 43, 72, 80, 86, 87, 88, 

116 



www.manaraa.com

220 Index 

    

Change-over ability, 86 
Chip, 185 
Class, 26, 28, 49, 58, 69, 72, 73, 120, 

128, 155, 190 
Classification, 35, 36, 38, 39, 42, 66, 67, 

69, 70, 72, 74, 75, 131, 139 
Class-oriented, 49 
Code table, 118 
Colour depth, 121 
Combinatorial, 105, 114 
Command, 16, 18, 61, 137, 190 
Compatibility, 1, 42, 48, 93, 105, 138, 

143, 145, 151 
Compatible, 29, 42, 43, 48, 68, 69, 137, 

165 
Complexity 

acceptable complexity, 146 
aspect complexity, 97 
complexity of a modellee, 20, 102, 
117 
complexity space, 98 
computational complexity, 96, 117, 
129 
derived complexity, 102 
discernible complexity, 97, 98, 99, 
101, 102, 110, 126, 140 
due, 126, 127, 128, 129, 158, 165, 
187 
imaginary, 99, 117, 126 
numerical, 117, 118, 119, 129 
of processing, 121 

Component, 10, 17, 36, 41, 42, 43, 44, 
46, 51, 53, 54, 55, 56, 63, 64, 70, 71, 
72, 73, 74, 83, 84, 85, 88, 96, 101, 
102, 105, 106, 108, 110, 114, 116, 
117, 120, 121, 122, 124, 128, 133, 
134, 135, 139, 140, 142, 143, 146, 
147, 151, 152, 154, 155, 159, 160, 
161, 163, 167, 175, 177, 178, 179, 
180, 181, 182, 185, 187, 188, 191, 
197, 198, 199, 200, 203, 204, 205 
component integration, 71 

Composite, 3, 40, 51, 133 
Computable, 105 
Computer, 3, 9, 13, 19, 38, 40, 41, 43, 

49, 51, 57, 60, 61, 63, 66, 68, 69, 73, 
75, 77, 78, 79, 80, 81, 83, 88, 98, 103, 
117, 118, 121, 128, 129, 147, 160, 

167, 174, 175, 177, 178, 179, 180, 
185, 186, 188, 201, 204, 207 

Computing 
utility computing, 149 

Condition, 49, 145 
Connection 

inter-layer-connection, 55 
Control, 3, 4, 15, 16, 17, 18, 20, 24, 33, 

41, 68, 74, 75, 86, 99, 113, 124, 131, 
137, 138, 158, 162, 163, 182, 184, 
187 
active control, 16 

Cooperation, 74, 82, 83, 84, 85, 131, 
155, 162, 193, 200 

Coordination, 1 
Cost, 20, 23, 45, 48, 82, 94, 95, 148, 

155, 157, 158, 163, 165, 167, 201 
Coverage, 45, 46, 47, 48, 71, 76 
Creation, 1, 3, 9, 21, 43, 85, 110, 119, 

128, 148, 153, 157, 158, 161, 165, 
167, 175, 176, 189, 197 

Customization, 1, 149 
Cycle, 13, 25, 32, 109, 142 

development cycle, 24, 25, 31, 32, 
143 

Data 
data model, 9, 71 
data type, 62, 63, 148 
model data, 73, 159, 182 

Decision making, 4, 100, 157, 162 
Design, 1, 13, 27, 38, 48, 66, 68, 83, 96, 

125, 128, 135, 142, 143, 145, 148, 
152, 153, 154, 157, 158, 159, 161, 
162, 163, 164, 165, 166, 167, 174, 
180, 189, 200 
design for x, 142 
platform-independent design, 165, 
166 

Development, 1, 2, 3, 4, 5, 9, 13, 15, 20, 
23, 24, 25, 31, 32, 36, 43, 45, 54, 57, 
63, 64, 69, 81, 88, 90, 93, 97, 135, 
142, 143, 144, 148, 149, 155, 158, 
161, 166, 167, 174, 175, 176, 178, 
189, 193, 198, 200, 201, 203, 205 
cross-platform development, 64 
product development, 23, 36, 37, 116, 
145, 159 

Die, 37, 47, 77, 149, 199 
Digital, 20, 30, 63, 85, 118, 129, 155 



www.manaraa.com

Index 221 

    

Dimensional, 28, 41, 43, 56, 72, 98, 119, 
120, 122 

Distance, 34, 48, 103 
Distributed, 94 
Domain 

competence domain, 98, 99, 101 
customer domain, 152, 154 
functional domain, 152, 154 
physical domain, 152 
process domain, 152 

Drive, 154, 174 
Dynamic size, 52 
Dynamics, 43, 72, 80, 117 
Efficiency, 13, 48, 49, 72, 130, 140, 143, 

147, 148, 163, 174, 176, 185, 189, 
197, 200, 201 

Engineering, 1, 16, 34, 36, 38, 49, 60, 
64, 66, 80, 81, 83, 87, 88, 117, 121, 
144, 148, 151, 152, 154, 159, 160, 
161, 174, 177, 180, 188, 191, 203 
mechanical engineering, 2, 13, 29, 77, 
88, 131 

Entity, 7, 17, 18, 42, 44, 48, 69, 70, 72, 
73, 97, 98, 101, 106, 107, 108, 110, 
111, 117, 121, 122, 125, 128, 130, 
135, 162, 167, 178, 180, 181, 182, 
184, 193 

Error, 77, 128, 174 
Evaluation, 83, 129, 203 
Experimenting 

active experimenting, 18 
passive experimenting, 18 

Factory, 2, 4, 20, 86, 111, 155, 163 
Feature, 8, 37, 38, 88, 101, 105, 141, 

155, 158, 161, 167, 176, 183, 193, 
203, 205 

Feedback, 200 
FEM, 68 
Flexibility, 43, 44, 45, 48, 51, 80, 84, 86, 

87, 88, 94, 103, 105, 116, 125, 140, 
143, 148, 151, 158, 160, 165, 179, 
183, 188, 191, 193, 200, 201, 203, 
205 
derivatives of flexibility, 88 

Flexible, 44, 87, 94, 116, 143, 184, 188, 
198, 200 

Floating-point number, 63 
Flow, 1, 15, 23, 93, 123, 128, 130, 137, 

161, 187, 201 

Fluid, 4 
Force, 15, 18, 69, 167, 177 
Forerunner, 16, 19 
Forging, 85, 111 
Form, 3, 4, 24, 27, 33, 44, 54, 64, 68, 71, 

76, 82, 85, 114, 117, 139, 141, 145, 
151, 178, 180, 191, 205 

Forming, 98, 123, 142 
Frequency, 27, 113, 119, 121, 197 
Function, 17, 19, 25, 31, 34, 36, 40, 44, 

45, 46, 50, 52, 71, 72, 74, 99, 101, 
103, 104, 113, 114, 120, 121, 122, 
124, 128, 129, 131, 133, 135, 137, 
138, 140, 141, 142, 143, 144, 148, 
149, 175, 200 
basic, 45 

Functional, 38, 44, 48, 85, 96, 113, 114, 
123, 129, 133, 135, 142, 149, 152, 
154, 156, 157, 164, 165, 166, 167, 
168, 169, 170, 171, 172, 173, 197 

Functionality, 3, 24, 25, 26, 41, 42, 43, 
44, 45, 46, 48, 50, 51, 52, 71, 72, 76, 
81, 88, 103, 113, 114, 125, 142, 148, 
149, 151, 157, 158, 160, 165, 175, 
176, 179, 183, 187, 188, 189, 191, 
198 
apparent functionality, 45 
due, 44 
functionality on demand, 149 
hidden functionality, 45 
required functionality, 25, 44, 45, 81, 
105 

Gear, 180 
Geometry, 120, 159, 162 
Granularity, 47, 48, 71, 109, 143, 148, 

149, 165, 176, 187, 188, 193 
Handling, 120, 121, 139, 146, 153, 164 
High, 19, 38, 43, 44, 52, 95, 99, 105, 

115, 117, 125, 143, 148, 149, 155, 
166, 183, 188, 189, 200, 201, 204 

Holarchy, 162, 180, 181, 182 
Holon, 162, 163, 181, 183 

Holonic Manufacturing System, 162 
manufacturing holon, 162 

Holonomy, 162, 183 
Homogeneity, 48, 80, 133, 185 
Host, 43, 64, 68, 69, 71, 74, 75, 79, 133, 

143, 146, 155, 165, 167, 175, 176, 
177, 179, 183, 198, 204, 207 



www.manaraa.com

222 Index 

    

host system, 69 
Human, 1, 4, 17, 29, 58, 60, 61, 117, 

125, 128, 183, 193 
Image, 121 
Imaginary, 29, 99, 105, 117, 126 
Impact, 2, 7, 37, 50, 60, 84, 88, 101, 102, 

103, 105, 164, 165, 176, 188 
Implementation-dependent, 48, 78 
Implementation-related, 114, 142 
Impression of complexity, 114, 116 
Improvement, 2, 4, 24, 38, 69, 83, 153, 

155 
Inefficiency, 46, 71, 148, 187 
Information, 1, 2, 4, 5, 9, 13, 19, 27, 31, 

40, 41, 57, 58, 59, 61, 62, 63, 66, 71, 
72, 78, 79, 80, 82, 85, 93, 94, 96, 98, 
99, 103, 105, 113, 116, 117, 120, 121, 
122, 129, 136, 137, 139, 140, 144, 
145, 160, 161, 162, 167, 182, 183, 
184, 191, 201 

Inherence, 53, 57, 62, 66, 153, 176, 183 
Integrated, 71, 74, 75, 109, 130, 133, 

135, 137, 139, 143, 145, 147, 158, 
159, 161, 179, 185, 187, 193, 197, 
207 

Integration, 1, 7, 48, 55, 57, 69, 71, 73, 
74, 75, 76, 82, 83, 84, 88, 93, 105, 
130, 131, 132, 133, 135, 138, 141, 
142, 143, 146, 147, 154, 156, 158, 
159, 160, 161, 163, 165, 177, 185, 
187, 188, 191, 197, 199, 201, 203 
aspects of integration, 133, 134, 143 
intensive integration, 135, 142 
method of integration, 133 
of aspects, 135 
of component functionality, 199 
of different aspects, 135 
of functions, 135, 142 
of functions/structures, 135 
of homogeneous elements, 135 
subject of integration, 133 

Integrity, 51, 144, 146 
Intelligence, 48, 60, 61, 63, 80, 162, 176, 

177, 180, 191, 192, 193, 200, 203 
Intelligent, 1, 3, 18, 60, 61, 81, 137, 143, 

159, 163, 167, 180, 181, 182, 184, 
191, 192, 193, 205 

Interaction, 33, 52, 71, 74, 131, 165, 187, 
200 

Interface, 66, 69, 91, 94, 110, 140, 144, 
159, 160, 163, 187, 191, 203 
hardware interface, 64 
interface pressure, 69, 187, 203 
interface resistance, 70, 187 
OMG-interface, 66 
user interface, 193 

Internal representation, 73, 103, 118, 120 
Interoperability, 155, 161, 165, 166 
Knowledge, 1, 2, 4, 5, 15, 16, 17, 18, 19, 

20, 21, 29, 38, 49, 57, 58, 59, 60, 61, 
73, 84, 85, 98, 99, 113, 124, 129, 130, 
148, 155, 182, 188, 191, 192, 200 
active use of knowledge, 17, 19 
background, 58, 117 
model knowledge, 73 
passive use of knowledge, 19 

Law of Standards, 90 
Layer, 3, 41, 49, 54, 55, 56, 64, 88, 98, 

105, 159, 175, 179, 183 
Learning, 4, 17, 19, 20, 105, 117, 136, 

183, 184, 185, 192 
Level 

critical level, 98, 99, 100, 128 
level of (modelling) detail, 102, 179, 
183 
level of detail, 11, 27, 88, 103, 128, 
167, 179, 183 
level of flexibility, 88 

Lifecycle, 1, 25, 30, 31, 32, 43, 53, 68, 
93, 97, 110, 130, 141, 145, 149, 154, 
174, 176 

Linear, 23, 108 
Logistics, 1 
Machine, 26, 29, 58, 60, 73, 86, 105, 

113, 181, 184 
Machining, 162, 177, 181, 203 
Maintenance, 1, 57, 85, 88, 125, 159, 

185, 186, 192, 201, 205 
Management, 1, 66, 68, 96, 142, 145, 

149, 154, 159, 161, 174, 182, 203 
Manufacturability, 41 
Manufacturing, 1, 2, 3, 24, 31, 33, 38, 

68, 74, 82, 85, 86, 96, 111, 131, 136, 
145, 147, 155, 158, 159, 160, 162, 
163, 174, 179, 203 

Material, 2, 3, 4, 5, 29, 30, 35, 41, 43, 
50, 61, 74, 79, 80, 110, 114, 133, 143, 
151, 156, 189 



www.manaraa.com

Index 223 

    

composite material, 3 
MCA. See model centred approach 
MDA. See model driven architecture 
Measurement, 40 
Mechanism, 83, 93, 191 
Mechatronics, 7, 13, 77, 83, 88, 98, 148, 

152, 178 
Metadata, 56, 58, 73, 161 

metadata of different degree, 73 
Metal, 3 
Meta-model, 10, 27, 56, 122 
Method, 1, 4, 13, 38, 43, 56, 57, 63, 69, 

72, 74, 81, 95, 109, 120, 128, 131, 
133, 135, 142, 147, 149, 153, 154, 
155, 158, 165, 176, 177, 187, 189, 
191, 203 

Methodology, 123, 153, 163 
Methods 

Class serialization method, 120 
Migration, 49 
Mixed behaviour, 60 
Model, 42, 56, 87, 94, 103, 141, 190 

compound model, 40, 43, 44, 46, 47, 
48, 52, 53, 54, 64, 73, 110, 124, 140, 
141, 145, 146, 147, 155, 160, 177, 
187, 188, 198 
computer model, 9, 13, 38, 41, 43, 66, 
68, 78, 79, 80 
elementary model, 42, 54 
invariance, 73 
maturity, 25 
network of systems of models, 88 
product model, 33, 34, 68, 88, 149, 
159, 181, 185 
reliable model, 153, 154, 158, 165 
text models, 26 

Model centred approach, 142, 167 
Modelled product's properties, 23 
Modelling 

essential activity, 13 
inventive modelling, 32 
modelling (degree of) freedom, 157 
modelling expedience, 157, 165 
modelling parameter, 157, 164, 165, 
190, 195, 196 

Model-specific traits, 38, 40 
Module, 44, 50, 64, 110, 125, 140, 144, 

149, 159, 163, 178, 180, 182, 189 
NC. See numerical control 

Negotiation, 152 
Object Management Group, 66, 70, 94, 

142, 161, 174, 180 
Object Request Broker, 159 
Object-oriented 

analysis, 49 
design, 49 
modelling, 49 
paradigm, 49 
programming, 49 

Observation, 13, 17, 19, 97, 100, 122, 
124 

Observer, 60, 96, 136, 137 
Online, 70, 155, 160, 200, 203 
Ontology, 193 
Openness, 48, 80, 151, 155 
Operation, 47, 54, 69, 73, 86, 94, 96, 

106, 110, 120, 159 
Optimization, 135, 162 
Parameter, 27, 28, 73, 103, 105, 114, 

116, 119, 120, 124, 129, 131, 144, 
152, 156, 157, 163, 164, 165, 166, 
167, 168, 169, 170, 171, 172, 173, 
183, 184, 190, 195, 196 

Parameterization, 165, 166, 183, 189, 
190 

Pattern, 17, 19, 32, 49, 57, 162, 165, 166, 
176, 193 

Perception, 17, 98, 99, 156 
Performance, 95, 165, 180, 201 
Phase, 13, 15, 17, 19, 20, 38, 43, 57, 68, 

93, 97, 109, 110, 130, 142, 144, 145, 
176, 195 
analysis phase, 109 

Pixel, 121 
Planning, 1, 38, 68, 83, 86, 111, 145, 

153, 177, 193, 203 
production planning, 175 

Platform, 13, 49, 50, 57, 64, 69, 82, 85, 
118, 155, 161, 165, 166, 176, 179, 
185 

Polymer, 3 
Portability, 49, 161, 205 
Porting, 49, 92 

effort for porting, 49 
Post-creation, 43 
Potential 

descriptive potential, 69 
Powder, 3, 4 



www.manaraa.com

224 Index 

    

Precision, 118, 129 
Prediction, 16, 19, 20, 21, 79, 125 
Prerequisites, 4, 51, 113, 146, 178, 179, 

190, 193, 201, 203 
Pressure, 19, 69, 94 
Proactive, 16, 60, 61, 184 
Proactive behaviour, 60, 61 
Problem, 50, 77 

psychological problem, 94 
Process 

continuous process, 123, 162 
discrete process, 123, 124 
effort for processing, 122 
periodic discrete process, 124 
periodic process, 124 
process model, 4, 34, 61, 85, 159, 
167, 176, 181, 193, 195 

Processing, 2, 5, 24, 47, 68, 69, 70, 101, 
105, 120, 122, 128, 130, 136, 158, 
159, 162, 179, 183 

Processors, 50, 93, 139 
Product 

derived product, 9, 32 
product lifecycle, 24, 68, 145, 203 

Production, 1, 15, 23, 24, 32, 33, 34, 63, 
69, 75, 80, 81, 83, 85, 86, 87, 93, 94, 
97, 110, 128, 130, 135, 143, 145, 148, 
153, 155, 158, 159, 162, 174, 189 

Productivity, 140, 162 
Profile, 3 
Programming, 4, 81, 120, 129, 144, 159, 

162 
Programs, 50, 60, 66, 68, 70, 73, 75, 80, 

81, 100, 113, 144, 177 
Project, 2, 96, 130, 149, 159, 161 
Property, 3, 7, 9, 10, 13, 21, 23, 27, 28, 

29, 32, 40, 41, 42, 43, 48, 52, 54, 55, 
57, 58, 63, 64, 72, 79, 80, 101, 103, 
136, 141, 142, 148, 151, 154, 155, 
163, 166, 174, 183, 184, 185 
achieved property, 23 
common, 141 
core property, 55, 141 
essential property, 55 
requested property, 23 

Prototype, 23, 29, 30, 31, 32, 177, 203 
rapid prototype, 3, 23 
virtual prototype, 23, 24, 159 

Prototyping, 3, 23, 159 

Quality, 13, 24, 25, 38, 41, 46, 48, 50, 
52, 60, 68, 82, 85, 88, 89, 101, 103, 
121, 130, 131, 133, 145, 147, 152, 
155, 162, 165, 167 

Radius, 28, 54, 58, 73, 103, 119, 120 
Rapid, 1, 2, 3, 23, 63, 130 
Recognition, 75 
Reconfigurability, 86 
Reconfigurable, 1 
Reliability, 50, 66, 80, 89, 125, 146, 165, 

180 
Removal, 144 
Reparability, 50 
Replica, 32, 175 
Requirement, 11, 24, 25, 26, 41, 44, 81, 

84, 85, 86, 88, 90, 93, 94, 96, 99, 102, 
103, 113, 114, 135, 145, 146, 148, 
149, 152, 153, 154, 155, 156, 157, 
163, 164, 165, 166, 167, 168, 169, 
170, 171, 172, 173, 179, 180, 185, 
197 
requirement elicitation, 152 

Reuse, 2, 3, 5, 49, 50, 51, 81, 128, 142, 
157, 163, 176, 180, 188, 189, 191, 
200 
economically based reuse, 51 
natural reuse, 51 

Reverse, 110, 144 
Safety, 3, 66, 135 
SCA. See system centred approach 
Scalability, 52, 80, 155, 157, 160, 165, 

178, 201 
Scheduling, 1 
Scope of integration, 133 
Self-similar, 162, 163 
Sensor, 184 
Separate compilation, 178 
Separation of authoring from use, 167, 

193 
Service, 1, 38, 75, 84, 87, 89, 94, 145, 

149, 163 
Set theory, 41, 42 
Sheet, 81, 83 
Shifting the focus, 143, 166, 177, 185 
Simplification factor, 129 
Simulation, 37, 38, 75, 177, 203 
SLS, 3 
SME, 83, 84, 149, 200 
Software 



www.manaraa.com

Index 225 

    

development, 131, 144, 160 
interface, 64 
model, 9, 20, 24, 33, 40, 48, 49, 50, 
52, 53, 54, 61, 63, 64, 66, 68, 72, 73, 
78, 81, 87, 88, 96, 98, 101, 103, 105, 
116, 117, 120, 128, 129, 142, 146, 
162, 176, 189, 190 
package, 68, 145 
packet, 68 
system, 60, 64, 68, 73, 81, 82, 96, 
110, 143, 151, 160, 163, 177, 200 

Solid, 17, 23 
Solution, 19, 77, 81, 85, 96, 99, 100, 

109, 110, 113, 130, 131, 133, 145, 
149, 152, 156, 165, 167, 175, 193, 
203 
meta-solution, 176 
problem solving, 21, 22, 109, 148, 
153 

Speed, 16, 19, 20, 34, 85, 95, 103, 176 
Stability, 144 
Stage, 13, 15, 30, 81, 99, 105, 135, 145, 

153, 154, 157, 174, 203 
Standard, 61, 82, 85, 89, 90, 91, 92, 93, 

95, 133, 145, 147, 160, 161, 167, 180, 
187, 203 
industry standard, 90, 94, 95 
ISO10303, 2, 4, 21, 60, 96, 110, 123, 
124, 142, 157, 165, 166, 175, 192, 
199 
ISO10303 (STEP), 91, 93, 161 

Standardization, 1, 7, 83, 89, 92, 94, 133, 
165, 187, 200 
standardization grade, 92, 133, 187 

State, 16, 18, 20, 33, 37, 53, 60, 62, 71, 
74, 97, 116, 118, 122, 123, 124, 125, 
128, 162, 183, 184, 190, 207 

Static size, 52 
Strength, 48, 91 
Stress, 96, 164, 167 
Structure, 17, 33, 41, 52, 53, 54, 55, 56, 

57, 66, 73, 75, 88, 97, 98, 106, 108, 
110, 120, 122, 123, 124, 128, 129, 
135, 142, 162, 163, 179, 182, 183, 
188, 197, 200 

Substance, 133 
Suite, 68 

Support, 1, 20, 23, 49, 56, 69, 75, 83, 88, 
90, 145, 151, 155, 176, 200, 203, 204, 
205 

Surface, 41 
Synthesis, 109, 110, 175 

synthesis phase, 109 
System 

basic input–output system, 175, 179 
closed system, 66, 188 
Computer Aided System, 68, 69, 81, 
93, 105, 130, 143, 144, 145, 146, 147, 
151, 152, 155, 156, 158, 159, 160, 
167, 177, 188, 189, 195, 199, 200, 
204, 205 
distributed system of models, 54 
dynamic system, 38, 74, 122, 123 
open, 66, 188 
operating system, 49, 74, 75, 175, 179 
system of distributed models, 54 
system of models, 43, 54, 88, 185, 
187, 198 
system of software models, 64 
systems design engineering, 66 
systems engineering, 66 

System centred approach, 69, 81, 167 
Tapping, 83 
Taxonomy, 64, 65, 97, 112, 193 
Technology, 1, 2, 3, 4, 5, 13, 15, 23, 63, 

75, 80, 95, 130, 144, 160, 161, 162, 
205 

Theory of computation, 117 
Time-span-dependent, 43 
Tool, 1, 4, 13, 26, 38, 81, 84, 95, 96, 

105, 121, 123, 128, 131, 133, 143, 
144, 146, 147, 148, 152, 153, 154, 
158, 159, 161, 165, 166, 174, 175, 
176, 177, 179, 181, 197, 198, 203, 
207 

Tools 
authoring tool, 152, 162, 167, 175, 
177, 179, 185, 187, 190, 199, 207 

Transfer, 69, 71, 125, 147, 187 
Transformability, 86, 88 
Transformation, 2, 4, 5 
Transition, 123, 155 
Turning, 7, 18 
UML, 38, 161 
Uncertainty, 96, 99, 105, 106, 116, 117, 

118, 124, 125, 172, 187 



www.manaraa.com

226 Index 

    

Unit 
compilation unit, 178 

Unrestrictedness, 153 
Usage-related, 114 
User, 48, 51, 61, 70, 71, 73, 74, 75, 82, 

83, 85, 101, 120, 128, 129, 131, 133, 
144, 145, 152, 155, 158, 160, 161, 
176, 177, 187, 190, 193, 200 

Validation, 152 

Value 
electronically representable value, 9 

Versatility, 43 
Viewer, 101, 145, 156 
Visualization, 13, 75, 102, 103, 119, 120, 

121, 129, 177 
Wear, 25, 152 
Wisdom, 61 
XML, 56, 75, 160, 161 

 
 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




